Specification Catalog

5 Series
SAH Air Handler

2-6 tons
Table of Contents

- Model Nomenclature ... 4
- Physical Data .. 4
- Air Handler Features and Benefits 5-6
- Dimensional Data - DX Air Handler 7-8
- Electrical Data .. 9
- Compatibility ... 9
- Wiring Schematics ... 10-19
- SAH 5 Speed ECM Blower Performance Data Option A 20-21
- Blower Performance Data Option C 22-24
- SR Encased/Uncased Coil Nomenclature 25
- Refrigerant Coil Compatibility 25
- Coil Physical Characteristics 25
- Dimensional Data .. 26
- SR Cased Coil Air Side Pressure Drop (Inches of WC) 26
- Dimensional Data - DX Cased Coils 27
- Engineering Guide Specifications 28
- Revision Guide ... 29
Nomenclature

Model
SAH – Series Air Handler

Unit Capacity
Refrigeration (DX)
022 MBTUH
026 MBTUH
030 MBTUH
036 MBTUH
042 MBTUH
048 MBTUH
060 MBTUH
066 MBTUH

Evaporator Coil
Air Coil Total Face Area, ft² [m²]
3.89 [0.36]
4.86 [0.45]
5.83 [0.54]
6.81 [0.63]
Tube outside diameter - in. [mm]
3/8 [9.52]
Number of rows
3
Fins per inch
12
Suction line connection - in. [mm] sweat
5/8 [15.87]
3/4 [19.05]
7/8 [22.23]
Liquid line connection - in. [mm] sweat
3/8 [9.52]
1/2 [12.7]
Refrigerant
R-410a
Nominal cooling capacity - tons [kW]
1.8 [6.44]
2.1 [7.59]
2.5 [8.79]
3.0 [10.55]
3.5 [12.30]
4.0 [14.06]
4.5 [17.58]
5.0 [19.33]
Condensate drain connection - (FPT) in. [mm]
3/4 [19.05]
Blower Wheel Size (Dia x W), in. [mm]
9 X 7
[229 x 178]
10 X 8
[254 x 203]
11 X 10
[279 x 254]
Blower motor type/speeds
Variable Speed ECM/ 5 Speed ECM
Blower motor output - hp [W]
1/2 [373]
1 [746]
Filter Standard - 1" [51mm] Field Supplied.
16 X 20
[406 X 508]
20 X 20
[508 x 508]
22 X 20
[559 x 508]
Electrical characteristics (60Hz)
208/230 - 1ph
Shipping weight - lbs. [kg]
147 [66.7]
168 [76.2]
198 [89.6]
206 [93.4]
Operating weight - lbs. [kg]
139 [63.0]
150 [68.0]
180 [81.6]
188 [85.3]

Physical Data

Air Handler Model Number (Refrigerant) 022 026 030 036 042 048 060 066
Evaporator Coil
Air Coil Total Face Area, ft² [m²] 3.89 [0.36] 4.86 [0.45] 5.83 [0.54] 6.81 [0.63]
Tube outside diameter - in. [mm] 3/8 [9.52]
Number of rows 3
Fins per inch 12
Suction line connection - in. [mm] sweat 5/8 [15.87] 3/4 [19.05] 7/8 [22.23]
Refrigerant R-410a
Condensate drain connection - (FPT) in. [mm] 3/4 [19.05]
Blower Wheel Size (Dia x W), in. [mm] 9 X 7 [229 x 178] 10 X 8 [254 x 203] 11 X 10 [279 x 254]
Blower motor type/speeds Variable Speed ECM/ 5 Speed ECM
Blower motor output - hp [W] 1/2 [373] 1 [746]
Filter Standard - 1" [51mm] Field Supplied. 16 X 20 [406 X 508] 20 X 20 [508 x 508] 22 X 20 [559 x 508]
Electrical characteristics (60Hz) 208/230 - 1ph
Operating weight - lbs. [kg] 139 [63.0] 150 [68.0] 180 [81.6] 188 [85.3]

Note: To field convert the SAH to bottomflow air discharge. The SAHBCK kit must be ordered separately.
Note: Air flow on the 060 and 066 units in the horizontal configurations should be limited to 1900 cfm in cooling mode, or condensate blow off may occur.
1. Only available with Aurora controls in the compressor section.
Air Handler Features and Benefits

- AID Tool Port
- Aurora AHB (Optional)
- Slide out blower assembly
- Field switchable, four position design (Horizontal Left/Right, Vertical & Bottomflow)
- Three cabinet sizes
 - 2 ton
 - 3 ton
 - 4/5/6 ton
- Factory installed TXV
- Factory installed Internal Electric Heat with circuit breakers on 15kw and 20kw models.
- 5 Speed ECM or Variable speed ECM blower motor options
- Foil lined, cleanable 1” insulation
- All Aluminum "A" air coil
- Composite vertical and horizontal drain pan with primary and secondary connections

FIGURE 3: Typical Installation
Note: Air flow on the 060 and 066 units in the horizontal configuration should be limited to 1900 CFM in cooling mode, or condensate blow off may occur.
Air Handler Features and Benefits cont.

Air Coil
Designed for R-410A refrigerant. Configured as an ‘A’ coil, aluminum tubes and enhanced corrugated lanced aluminum fins to provide high efficiencies at low face velocities.

Cabinet
Constructed of heavy gauge environmentally-responsible galvanized steel for maximum corrosion resistance. All units are painted with a powder coat finish. All interior surfaces are lined with 1” thick, foil lined acoustic type fiber insulation, applied in a manner that prevents the introduction of glass fibers into the air stream. Multiple knockouts in various sizes facilitate power and low voltage wiring. Multiple access panels for ease of service.

Factory Sealed
Achieves 2% or less total airflow leakage rate.

Installation Ease
Cabinets are shipped in one piece but can be separated for ease of installation in tight spaces.

Auxiliary/ Emergency Electric Heat
Electric heat packages can be factory or field installed. For field installed electric heat the Auxiliary Heat Compatibility table below shows the available heater packages for the air handler.

Configurations
Cabinets are factory configured for upflow and horizontal right hand air discharge installation but can be easily configured for horizontal left hand or bottomflow air discharge.

Drain Pans
Two composite drain pans included. One for vertical and one for horizontal applications. The pans come equipped with primary and secondary drain connections.

Electrical Disconnect
Factory installed circuit breaker on 15kW/20kW heaters.

Expansion Device
Factory installed TXV with internal check valve inside of cabinet.

Refrigerant Connections
Suction and liquid lines have sweat connections extended outside of cabinet for ease of connection.

Controls
The SAH Air Handler has two control options.

Control option ‘A’ has a terminal strip board that uses the 24V input from the thermostat to control the 5 speed ECM motor.

Control option ‘C’ has the AHB board. The AHB is part of the Aurora controls platform and communicates via modbus to the ABC. The AHB board controls the air handlers variable speed motor, auxiliary heat staging, provides condensate overflow protection, air coil freeze protection FP2, auxiliary heat and blower energy monitoring, leaving air temperature, and is Symphony compatible with Aurora controls in the compressor section.

Auxiliary Heat Compatibility

<table>
<thead>
<tr>
<th>Model</th>
<th>kW</th>
<th>Stages</th>
<th>022 - 030</th>
<th>036</th>
<th>042 - 048</th>
<th>060</th>
<th>066</th>
</tr>
</thead>
<tbody>
<tr>
<td>19P659-01</td>
<td>5</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19P659-02</td>
<td>10</td>
<td>2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>19P659-03</td>
<td>15</td>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19P659-04</td>
<td>20</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

1/10/2017
Dimensional Data - DX Air Handler

Bottom Flow Unit Configuration

SAH Air Handler - Bottom flow

<table>
<thead>
<tr>
<th>Bottomflow Configuration</th>
<th>Overall Cabinet</th>
<th>Refrigerant Connections</th>
<th>POWER SUPPLY 024 ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width (in.)</td>
<td>Low Voltage (Vin.)</td>
<td></td>
</tr>
<tr>
<td>822-039</td>
<td>37.5</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(cm.) 94.96</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>936</td>
<td>31.5</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(cm.) 79.94</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>842-066</td>
<td>24.9</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(cm.) 62.86</td>
<td>11.2</td>
<td></td>
</tr>
</tbody>
</table>

*Condensate is plastic 3/4" FPT
Discharge flange is field installed and extends 1" (25.4 mm) from cabinet*
Electrical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Electric Heat Capacity</th>
<th>Supply Circuit</th>
<th>Rated Voltage</th>
<th>Voltage Min/Max</th>
<th>Fan Motor FLA</th>
<th>Heater Ampacity</th>
<th>Total Unit FLA</th>
<th>Minimum Circuit Ampacity</th>
<th>Maximum Fuse/HACR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KW BTUH</td>
<td></td>
<td>208v 240v</td>
<td>208v 240v</td>
<td>208v 240v</td>
<td>208v 240v</td>
<td>208v 240v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>0 0</td>
<td>-</td>
<td>4.0</td>
<td>-</td>
<td>4.0 4.0 5.0 5.0</td>
<td>10 10</td>
<td>30 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>4.8 16,382</td>
<td>single</td>
<td>4.0 4.0 4.0 5.0</td>
<td>10 10</td>
<td>30 30</td>
<td>10 10</td>
<td>30 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>0 0</td>
<td>-</td>
<td>4.0 4.0 4.0 5.0</td>
<td>10 10</td>
<td>30 30</td>
<td>10 10</td>
<td>30 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>4.8 16,382</td>
<td>single</td>
<td>4.0 4.0 4.0 5.0</td>
<td>10 10</td>
<td>30 30</td>
<td>10 10</td>
<td>30 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>9.6 32,765</td>
<td>single</td>
<td>7.0 7.0 7.0 7.0</td>
<td>15 15</td>
<td>40 40</td>
<td>40 40</td>
<td>40 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>14.4 49,147</td>
<td>L1/L2</td>
<td>7.0 7.0 7.0 7.0</td>
<td>15 15</td>
<td>40 40</td>
<td>40 40</td>
<td>40 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>19.2 65,530</td>
<td>L1/L2</td>
<td>7.0 7.0 7.0 7.0</td>
<td>15 15</td>
<td>40 40</td>
<td>40 40</td>
<td>40 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>19.2 65,530</td>
<td>L1/L2</td>
<td>7.0 7.0 7.0 7.0</td>
<td>15 15</td>
<td>40 40</td>
<td>40 40</td>
<td>40 40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes:

1 – To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.

2 – Low voltage wiring CLASS 2.

3 – 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.

Legend

- Factory Low voltage wiring
- Factory Line voltage wiring
- Field low voltage wiring
- Field line voltage wiring
- Optional block
- DC Voltage PCB traces
- Internal junction
- Quick connect terminal
- Thermal Limit Switch
- Field wire lug
- Ground
- N.O., N.C.
- ER1 to ER4 - Aux heat stage relays
- Light emitting diode - Green
- 208-230V Relay coil
- EHC - Electric Heat Contactor
- Polarized connector
- PB - Power block
- HE - Heater element
- Breaker

Wire 24V Thermostat as shown connected to the strip wires already connected to TB. Do not connect directly to the TB terminals. Damage to the Stat may occur. TB can be used to connect to the ABC board in the Compressor section.

Factory Low voltage wiring
Wiring Schematics cont.

SAH Air Handler Control Option A Schematic

Air Handler 5kW Electric Heat

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.
2 – Low voltage wiring CLASS 2.
3 – 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.
Wiring Schematics cont.

SAH Air Handler Control Option A Schematic

Air Handler 10kW Electric Heat

Notes:
1. To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.
2. Low voltage wiring CLASS 2.
3. 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.

Legend:
- Factory Line voltage wiring
- Field Line voltage wiring
- Field Line voltage wiring
- Optional block
- DC Voltage PCB traces
- Internal junction
- Quick connect terminal
- Thermal Limit Switch
- Field wire lug
- Ground
- Brown
- Red
- Orange
- Blue
- Yellow
- Grey
- Black
- White
- Green
- Transformer
- Blk/Wh
- 24V
- Black
- Blue
- Red
- Tan
- Grey
- 12V
- Black
- Blue
- Red
- Tan
- Blue
- Yellow
- Orange
- Green
- S
- TB
- N.O., N.C.
- ER1 to ER4 - Aux heat stage relay

WIRE 24V THERMOSTAT AS SHOWN CONNECTED TO THE STRIP Wires ALREADY CONNECTED TO TB. DO NOT CONNECT DIRECTLY TO THE TB TERMINALS. DAMAGE TO THE STAT MAY OCCUR. TB CAN BE USED TO CONNECT TO THE ABC BOARD IN THE COMPRESSOR SECTION.
Wiring Schematics cont.

SAH Air Handler Control Option A Schematic

Air Handler 15kW Electric Heat

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.
2 – Use manufacturer’s part number 19P592-01 (jumper bar assembly) when single source power is required.
3 – Low voltage wiring CLASS 2.
4 – 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.

Legend

- Factory Low voltage wiring
- Field low voltage wiring
- Field low voltage wiring
- Optional block
- DC voltage PCB issues
- Internal junction
- Quick connect terminal
- Thermal Limit Switch
- Reel wire leg
- Grounded
- N.O., N.C.
- N.C., N.O.
- EHC
- EHC
- Light emitting diode - Green
- 208-230V Relay coil
- Electric Heat Contactor
- Polarized connector
- Factory Low voltage wiring
- Factory Line voltage wiring
- Field low voltage wiring
- Field line voltage wiring
- Optional block
- DC voltage PCB issues
- Internal junction
- Quick connect terminal
- Power block
- Heater element
- Breaker
- Internal junction
- Quick connect terminal
- Power block
- Heater element
- Breaker

Dual Power Supply Connections

If two separate circuits are used to supply power to the auxiliary heat kit, the installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.
SAH Air Handler Control Option A Schematic

97P901-05

Air Handler 20kW Electric Heat

Wiring Schematics cont.

Notes:
1. To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.
2. Use manufacturer’s part number 19P592-01 (jumper bar assembly) when single source power is required.
3. Low voltage wiring CLASS 2.
4. 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.

Dual Power Supply Connections

If two separate circuits are used to supply power to the auxiliary heat kit, the Installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.

Legend

Factory Low voltage wiring
Factory Line voltage wiring
Field Line voltage wiring
Field installation wiring
Optional breaker
DC Voltage PCB traces
Internal ground
Quick connect terminal
Thermal Limit Switch
Field wire lug
Ground
N.O., N.C.
208-230V Relay coil
Electric Heat Contact
Polarized connector
Light emitting diode - Green
208-230V Disconnect Panel
Thermostat
Power block
Heater element
Heater relay
ER1 to ER4 - Aux heat stage relays

If two separate circuits are used to supply power to the auxiliary heat kit, the Installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.
Wiring Schematics cont.

SAH Air Handler Control Option C Schematic

97P903-01

Air Handler No Electric Heat

Unit Power
208-230V3PH

SAH Air Handler Control Option C Schematic

97P903-01

Air Handler No Electric Heat

Non-Communicating Thermostat will connect to the P1 connection on the ABC board in the compressor section. A 4-conductor, 20AWG wire will need to connect to the TO ABC (C R + -) connection on the ABC board in the compressor section. Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2 – Low voltage wiring CLASS 2.
3 – DIP switch 1 on SW1 must be set in the OFF position.

Legend

Factory Low voltage wiring
Polarized connector
Field low voltage wiring
Power block
Field low voltage wiring
DIP package 4 position
Optional block
DC Voltage PCB traces
Quick connect terminal
Thermal Limit Switch
Non-Communicating Thermostat
Field wire lug
Heater element
Low voltage block
DIP block
Polarized connector
Light emitting diode - Green
Breaker
P
Fused Limit
PB
Power block
SWT
DIP package 4 position
HE
Heater element
Current Transducer

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2 – Low voltage wiring CLASS 2.
3 – DIP switch 1 on SW1 must be set in the OFF position.
Wiring Schematics cont.

SAH Air Handler Control Option C Schematic

Air Handler 5kW Electric Heat

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2 – Low voltage wiring CLASS 2.
3 – DIP switch 1 on SW1 must be set in the OFF position.

Non-Communicating Thermostat will connect to the P1 connection on the ABC board in the compressor section. A 4-conductor, 2AWG wire is required to connect from the ABC P7 (see detail 'A' on schematic), connection to the TO ABC (C R + -) power block (PB2) in the Air Handler.

Communicating Thermostat will connect to the COMM STAT (C R + -) power block PB3 in the air handler. A 4-conductor, 20AWG wire will need to connect from the TO ABC (C R + -) power block (PB2) in the Air Handler to the ABC P7 (See detail 'A' on schematic) connection on the ABC board in the compressor section.

Legend:
- Factory Low voltage wiring
- Factory Line voltage wiring
- Field low voltage wiring
- Field Line voltage wiring
- Optional block
- DC Voltage PCB traces
- Internal junction
- Quick connect terminal
- Thermal Limit Switch
- Field wire lug
- Ground
- N.O., N.C.
- Light emitting diode – Green
- Fused Limit
- Breaker
- Polarity connector
- Power block
- DIP package 4 position
- Heater element
- Current Transformer

Non-Communicating Thermostat

Non-Communicating Thermostat

Detail 'A'
Communicating Thermostat will connect to the COMM STAT (C R + -) power block PB3 in the air handler. A 4-conductor, 20AWG wire will need to connect from the TO ABC (C R + -) power block (PB2) in the Air Handler to the ABC P7 (See detail 'A' on schematic) connection on the ABC board in the compressor section.

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2 – Low voltage wiring CLASS 2.
3 – DIP switch 1 on SW1 must be set in the OFF position.
Wiring Schematics cont.
SAH Air Handler Control Option C Schematic

97P903-04
Air Handler 15kW Electric Heat

Dual Power Supply Connections
If two separate circuits are used to supply power to the auxiliary heat kit, the installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.

Notes:
1. To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2. Use manufacturer’s part number 19P592-01 (jumper bar assembly) when single source power is required.
3. Low voltage wiring CLASS 2.
4. DIP switch 1 on SW1 must be set in the OFF position.

Legend
- Factory Low voltage wiring
- Factory Line voltage wiring
- Field low voltage wiring
- Field line voltage wiring
- Optional block
- DC Voltage PCB traces
- Internal junction
- Quick connect terminal

Non-Communicating Thermostat will connect to the PT connection on the ABC location the approximate location of A conducted connections. External wiring will need to connect from the ABC PT (See detail A on schematic) to the TO ABC (C R + -) power block (PB4) in the Air Handler.

Communicating Thermostat
Dual Power Supply Connections

If two separate circuits are used to supply power to the auxiliary heat kit, the Installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.

Notes:

1. To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2. Use manufacturer’s part number 19P592-01 (jumper bar assembly) when single source power is required.
3. Low voltage wiring CLASS 2.
4. DIP switch 1 on SW1 must be set in the OFF position.
SAH 5 Speed ECM Blower Performance Data Option A

SAH 5 Speed ECM Blower Performance Data Option A cont.

5-Speed ECM Constant Torque Motors
The 5-Speed ECM is a ‘Constant Torque’ ECM motor and delivers air flow similar to a PSC but operates as efficiently as an ECM Motor. Because it’s an ECM Motor, the 5-Speed ECM can ramp slowly up to down like the ECM motor. There are 5 possible speed taps available on the 5-Speed ECM motor with #1 being the lowest airflow and #5 being the highest airflow. These speed selections are preset at the time of manufacture and are easily changed in the field if necessary.

If more than one tap are energized at the same time, built in logic gives precedence to the highest tap number and allows air flow to change with G, Y1, Y2 and W signals. Each of those 5 speeds has a specific ‘Torque’ value programmed into the motor for each speed selection. As static pressure increases, airflow decreases resulting in less torque on the rotor. The motor responds only to changes in torque and adjusts its speed accordingly.

The 5-Speed ECM motor is powered by line voltage but the motor speed is energized by 24 VAC.

5-Speed ECM Benefits:
• High Efficiency
• Soft Start
• 5 speeds with up to 4 speeds on-line
• Built-in logic allows air flow to change with G, Y1, Y2 and W signals
• Super efficient low airflow continuous blower setting.

Setting Blower Speed - 5-Speed ECM
5-Speed ECM blower motors have five (5) speeds of which three (3) are selectable on single speed and four (4) are selectable on dual capacity.

Caution: Disconnect all power before performing this operation.

5-Speed ECM Motor Connections - Single Speed Splits

5-Speed ECM Motor Connections - Dual Capacity Splits
Blower Performance Data Option C

Blower Performance Variable Speed ECM Control Option C

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MAX ESP</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>022</td>
<td>0.50</td>
<td>400</td>
<td>500</td>
<td>G</td>
<td>600</td>
<td>L</td>
<td>700</td>
<td>800</td>
<td>H</td>
<td>900</td>
<td>1000</td>
<td>Aux</td>
<td>1100</td>
</tr>
<tr>
<td>026</td>
<td>0.50</td>
<td>400</td>
<td>500</td>
<td>G</td>
<td>600</td>
<td>L</td>
<td>700</td>
<td>800</td>
<td>H</td>
<td>900</td>
<td>1000</td>
<td>Aux</td>
<td>1100</td>
</tr>
<tr>
<td>030</td>
<td>0.50</td>
<td>400</td>
<td>500</td>
<td>G</td>
<td>600</td>
<td>L</td>
<td>700</td>
<td>800</td>
<td>H</td>
<td>900</td>
<td>1000</td>
<td>Aux</td>
<td>1100</td>
</tr>
<tr>
<td>036</td>
<td>0.50</td>
<td>550</td>
<td>650</td>
<td>G</td>
<td>700</td>
<td>L</td>
<td>800</td>
<td>850</td>
<td>H</td>
<td>900</td>
<td>1050</td>
<td>Aux</td>
<td>1100</td>
</tr>
<tr>
<td>042</td>
<td>0.75</td>
<td>650</td>
<td>750</td>
<td>G</td>
<td>800</td>
<td>L</td>
<td>1000</td>
<td>1150</td>
<td>H</td>
<td>1200</td>
<td>1300</td>
<td>Aux</td>
<td>1400</td>
</tr>
<tr>
<td>048</td>
<td>0.75</td>
<td>650</td>
<td>750</td>
<td>G</td>
<td>800</td>
<td>L</td>
<td>1000</td>
<td>1150</td>
<td>H</td>
<td>1200</td>
<td>1300</td>
<td>Aux</td>
<td>1400</td>
</tr>
<tr>
<td>060</td>
<td>0.75</td>
<td>950</td>
<td>1100</td>
<td>G</td>
<td>1200</td>
<td>1350</td>
<td>1500</td>
<td>1650</td>
<td>L</td>
<td>1700</td>
<td>1800</td>
<td>Aux</td>
<td>2000</td>
</tr>
<tr>
<td>066</td>
<td>0.75</td>
<td>950</td>
<td>1100</td>
<td>G</td>
<td>1200</td>
<td>1350</td>
<td>1500</td>
<td>1650</td>
<td>L</td>
<td>1700</td>
<td>1800</td>
<td>2000</td>
<td>Aux</td>
</tr>
</tbody>
</table>

Factory settings are at recommended G-L-H-Aux speed settings. L-H settings MUST be located within boldface CFM range.

“Aux” is factory setting for auxiliary/emergency heat and must be equal to or above the “H” setting as well as at least the minimum required for the auxiliary heat package.

“G” may be located anywhere within the airflow table.

CFM is controlled within 5% up to the maximum ESP.

Max ESP includes allowance for wet coil.
Blower Performance Data Option C cont.

SAH Control Option C AHB Board

The SAH Air Handler with the ‘Advanced’ control option expands on the capability of the Aurora ‘Advanced’ Control (ABC and AXB) in the compressor section, by adding the AHB board in the air handler.

NOTE: The Energy Monitoring and Leaving Air Temperature features at the AHB board are dependent on the AXB board in the compressor section.

It is highly recommended that the installing/servicing contractor use an Aurora Interface and Diagnostic Tool (AID) when installing and servicing an Aurora ‘Advanced’ control system.

The AHB board includes the following features:

AHB DIP Switch

DIP 1 - ID: This is the AHB ModBus ID and should always read Off.

DIP 2 & 3 - Future Use

DIP 4 & 5 - Accessory Relay2: A second, DIP configurable, accessory relay is provided that can be cycled with the compressor 1 or 2, blower, or the Dehumidifier (DH) input. This is to complement the Accessory 1 Relay on the ABC board.

<table>
<thead>
<tr>
<th>Position</th>
<th>DIP 4</th>
<th>DIP 5</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>ON</td>
<td>Cycles with Fan or ECM (or G)</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>ON</td>
<td>Cycles with CC1 first stage of compressor or compressor spd 1-6</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>OFF</td>
<td>Cycles with CC2 second stage of compressor or compressor spd 7-12</td>
</tr>
<tr>
<td>4</td>
<td>OFF</td>
<td>OFF</td>
<td>Cycles with DH input from ABC board</td>
</tr>
</tbody>
</table>

AWL – Aurora Weblink (optional accessory)

AWL is an add-on WiFi router that connects to the ABC and offers many features:

- Remote access to thermostat settings, schedules, etc.
- with your smartphone, tablet or laptop
- Receive Lockout/Fault info via text or e-mail
- View heat pump energy usage from the Internet for the day, week, month, year or real-time
- Internet AID Tool capability allows remote troubleshooting for the technician
- Remote AID Tool capability at the heat pump with smartphone, tablet or laptop for the technician
- Allows data acquisition of the heat pump through the Internet, see graphs of performance and chart historical data for the technician
- Stores historical data on SD card

IntelliZone2 Zoning Compatibility (Optional IntelliZone2 Communicating Zoning)

A dedicated input to connect and communicate with the IntelliZone2 (IZ2) zoning system is provided on P7 on the AHB and AXB. This is a dedicated communication port using a proprietary ModBus protocol. An AXB in the compressor section or an AHB in the air handler is required. Consult the Intellizone2 literature for more information.

Communicating Digital Thermostats

The Aurora controls system also features either monochromatic or color touch screen graphic display thermostats for user interface. These displays not only feature easy to use graphical interface but display alerts and faults in plain English. Many of the features discussed here may not be applicable without these thermostats.

Energy Monitoring (AXB Board Required in Compressor Section)

(Standard Sensor Kit on ‘Advanced’ models)

The Energy Monitoring Kit includes two current transducers (blower and electric heat) so that the complete power usage of the air handler can be measured. The AID Tool provides configuration detail for the type of blower motor, power adjustment and a line voltage calibration procedure to improve the accuracy. The information can be displayed on the AID Tool or selected communicating thermostats. The TPCM32U03A(*)/04A(*) will display instantaneous energy use while the color touchscreen TPCC32U01(*) will in addition display a 13 month history in graph form. Refer to Compressor Section Start Up Energy Monitoring for configuration details.

Freeze Detection (Air Coil)

- uses the FP2 input to protect against ice formation on the air coil. The FP2 input will operate exactly like FP1 except that the set point is 30 degrees and is not field adjustable.

Condensate Overflow

- fault is recognized when the impedance between this line and 24 VAC common or chassis ground drops below 100K ohms for 30 seconds continuously.

Leaving Air Temperature (AXB Board Required in Compressor Section)

A leaving air temperature (LAT) thermistor is located near the blower inlet and can be read via the AID tool or AWL.

Electric Heat Staging

The AHB board provides two stages of auxiliary heat operation. During normal operation, the first stage of electric heat is energized 10 seconds after the W command is received. If the demand continues the second stage is of electric heat will be energized after 5 minutes. In an Emergency heat operation the time delay between stage one and stage two will be 2 minutes.
Blower Performance Data Option C cont.

Setting Blower Speed - Variable Speed ECM

The ABC board’s Yellow Config LED will flash the current ECM blower speed selections for “G”, low, and high continuously with a short pause in between. The speeds can also be confirmed with the AID Tool under the Setup/ECM Setup screen. The Aux will not be flashed but can be viewed in the AID Tool. The ECM blower motor speeds can be field adjusted with or without using an AID Tool.

ECM Setup without an AID Tool

The blower speeds for “G”, Low (Y1), High (Y2), and Aux can be adjusted directly at the Aurora ABC board which utilizes the push button (SW1) on the ABC board. This procedure is outlined in the ECM Configuration Mode portion of the Aurora ‘Base’ Control System section. The Aux cannot be set manually without an AID Tool.

ECM Setup with an AID Tool

A much easier method utilizes the AID Tool to change the airflow using the procedure below. First navigate to the Setup screen and then select ECM Setup. This screen displays the current ECM settings. It allows the technician to enter the setup screens to change the ECM settings. Change the highlighted item using the ◀ and ▶ buttons and then press the ◙ button to select the item.

Selecting YES will enter ECM speed setup, while selecting NO will return to the previous screen.

ECM Speed Setup - These screens allow the technician to select the “G”, low, high, and auxiliary heat blower speed for the ECM blower motor. Change the highlighted item using the ▲ and ▼ buttons. Press the ◙ button to select the speed.

After the auxiliary heat speed setting is selected the AID Tool will automatically transfer back to the ECM Setup screen.

Cooling Airflow Setup - These screens allow the technician to select -15%, -10%, -5%, None or +5%. Change the adjustment percentage using the ▲ and ▼ buttons. Press the ◙ button to save the change.
SR Encased/Uncased Nomenclature

![Diagram showing SR Encased/Uncased Nomenclature]

Refrigerant Coil Compatibility

<table>
<thead>
<tr>
<th>Encased/Uncased Coil</th>
<th>Indoor Split Model (Single)</th>
<th>Indoor Split Model (Dual Capacity)</th>
<th>Outdoor Split Model (Dual Capacity)</th>
<th>Recommended Airflow (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR**026C*</td>
<td>NSZ022</td>
<td>-</td>
<td>-</td>
<td>800</td>
</tr>
<tr>
<td>SR**026C*</td>
<td></td>
<td>NDZ026</td>
<td>NDS026</td>
<td>850</td>
</tr>
<tr>
<td>SR**036C*</td>
<td>NSZ030</td>
<td>-</td>
<td>-</td>
<td>1000</td>
</tr>
<tr>
<td>SR**036C*</td>
<td>NSZ036</td>
<td>-</td>
<td>-</td>
<td>1200</td>
</tr>
<tr>
<td>SR**036C*</td>
<td></td>
<td>NDZ038</td>
<td>NDS038</td>
<td>1200</td>
</tr>
<tr>
<td>SR**048C*</td>
<td>NSZ042</td>
<td>-</td>
<td>-</td>
<td>1300</td>
</tr>
<tr>
<td>SR**048C*</td>
<td>NSZ048</td>
<td>-</td>
<td>-</td>
<td>1500</td>
</tr>
<tr>
<td>SR**048C*</td>
<td></td>
<td>NDZ049</td>
<td>NDS049</td>
<td>1500</td>
</tr>
<tr>
<td>SR**060C*</td>
<td>NSZ060</td>
<td>-</td>
<td>-</td>
<td>1800</td>
</tr>
<tr>
<td>SR**060C*</td>
<td></td>
<td>NDZ064</td>
<td>NDS064</td>
<td>1800</td>
</tr>
<tr>
<td>SR**060C*</td>
<td>NSZ070</td>
<td>-</td>
<td>-</td>
<td>2000</td>
</tr>
<tr>
<td>SR**060C*</td>
<td></td>
<td>NDZ072</td>
<td>NDS072</td>
<td>2000</td>
</tr>
</tbody>
</table>

SR Coil Physical Characteristics

<table>
<thead>
<tr>
<th>Air Handler Model Number (Refrigerant)</th>
<th>026</th>
<th>036</th>
<th>048</th>
<th>060</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporator Coil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Coil Total Face Area, ft² [m²]</td>
<td>3.89 [0.36]</td>
<td>4.86 [0.45]</td>
<td>5.83 [0.54]</td>
<td>6.81 [0.63]</td>
</tr>
<tr>
<td>Tube outside diameter - in. [mm]</td>
<td>3/8 [9.52]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of rows</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fins per inch</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction line connection - in. [mm]</td>
<td>5/8 [15.87]</td>
<td>3/4 [19.05]</td>
<td>7/8 [22.23]</td>
<td></td>
</tr>
<tr>
<td>Refrigerant</td>
<td>R-410a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condensate drain connection - (FPT) in. [mm]</td>
<td>3/4 [19.05]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Standard - 1" [51mm] Field Supplied.</td>
<td>16 X 20 [406 X 508]</td>
<td>20 X 20 [508 x 508]</td>
<td>22 X 20 [559 x 508]</td>
<td></td>
</tr>
</tbody>
</table>

3/7/17
Dimensional Data

Refrigerant Coil

<table>
<thead>
<tr>
<th>Model</th>
<th>Overall Dimensions</th>
<th>Connections</th>
<th>Condensate Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width</td>
<td>Depth</td>
<td>Height</td>
</tr>
<tr>
<td>SRAA026U*</td>
<td>in.</td>
<td>16.1</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>cm.</td>
<td>40.8</td>
<td>52.6</td>
</tr>
<tr>
<td>SRA036U*</td>
<td>in.</td>
<td>19.7</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>cm.</td>
<td>50.0</td>
<td>52.6</td>
</tr>
<tr>
<td>SRA048U*</td>
<td>in.</td>
<td>23.2</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>cm.</td>
<td>58.9</td>
<td>52.6</td>
</tr>
<tr>
<td>SRA060U*</td>
<td>in.</td>
<td>23.2</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>cm.</td>
<td>58.9</td>
<td>52.6</td>
</tr>
</tbody>
</table>

NOTE: All refrigerant coils feature factory installed TXV.

SR Cased Coil Air Side Pressure Drop (inches of WC)

<table>
<thead>
<tr>
<th>Model</th>
<th>Airflow (CFM)</th>
<th>Dry Coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAA026C1</td>
<td>600</td>
<td>0.08</td>
</tr>
<tr>
<td>SRAA026C1</td>
<td>800</td>
<td>0.14</td>
</tr>
<tr>
<td>SRAA026C1</td>
<td>1000</td>
<td>0.20</td>
</tr>
<tr>
<td>SRAA036C1</td>
<td>1200</td>
<td>0.11</td>
</tr>
<tr>
<td>SRAA036C1</td>
<td>1400</td>
<td>0.14</td>
</tr>
<tr>
<td>SRAA048C1</td>
<td>1600</td>
<td>0.15</td>
</tr>
<tr>
<td>SRAA048C1</td>
<td>1800</td>
<td>0.19</td>
</tr>
<tr>
<td>SRAA060C1</td>
<td>2000</td>
<td>0.25</td>
</tr>
<tr>
<td>SRAA060C1</td>
<td>2200</td>
<td>0.27</td>
</tr>
<tr>
<td>SRAA060C1</td>
<td>2400</td>
<td>0.33</td>
</tr>
<tr>
<td>SRAA060C1</td>
<td>2600</td>
<td>0.38</td>
</tr>
</tbody>
</table>

3/7/2017
Dimensional Data - DX Cased Coils

SAH CASED AIR COIL

<table>
<thead>
<tr>
<th>Topflow & Horizontal Configuration</th>
<th>Overall Cabinet</th>
<th>Refrigerant Connections</th>
<th>Condensate Connections</th>
<th>Duct Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width</td>
<td>Depth</td>
<td>Height</td>
<td>Suction</td>
</tr>
<tr>
<td>026</td>
<td>in.</td>
<td>cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.8</td>
<td>45.2</td>
<td>45.2</td>
<td>8.8</td>
</tr>
<tr>
<td>036</td>
<td>in.</td>
<td>cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>54.6</td>
<td>54.6</td>
<td>8.5</td>
</tr>
<tr>
<td>048-060</td>
<td>in.</td>
<td>cm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.9</td>
<td>62.2</td>
<td>62.2</td>
<td>9.5</td>
</tr>
</tbody>
</table>

NOTE: Cased coils are shipped with a 1" Flange Kit.
Engineering Guide Specifications

General
The air handler shall provide vertical upflow, downflow, or horizontal configurations in one package. Units shall be listed by a nationally recognized safety-testing laboratory or agency, such as Underwriter’s Laboratory (UL) or Environmental Testing Laboratories (Intertek-ETL). The air handler units shall be designed and AHRI performance listed to operate with the geothermal split condensing units as provided by the manufacturer. Each unit shall be pallet mounted and shipped using dense cardboard corners/top and stretch wrap for easy shipping damage inspection.

Casing and Cabinet
The cabinet shall be fabricated from heavy-gauge galvanized steel and polyester powder coat paint to withstand 1000 hours of salt spray testing. The interior shall be insulated with 1 in. thick, multi-density, cleanable aluminum foil coated glass fiber with edges sealed or tucked under flanges to prevent the introduction of glass fibers into the discharge air. One large blower compartment access panel shall be provided and shall be removable with supply and return ductwork in place. The internal components layout shall provide for major service with the unit in-place for restricted access installations. The blower assembly access shall be slide-out serviceable via a ‘works-in-a-drawer’ design. The cabinet shall be convertible to horizontal or downflow applications by reconfiguring the cabinet using only a nut driver. The unit shall be ‘zero clearance’ approved on any of its external surfaces.

Refrigeration Circuit
All units shall provide a fin tube air-to-refrigerant heat exchanger of the “A” coil design. The finned tube coil shall be sized for low-face velocity and constructed of lanced aluminum fins bonded to aluminum tubes in a staggered pattern. The coil shall include a composite drain pan.

The thermal expansion valve shall be factory installed and provide proper superheat over the entire liquid temperature range with minimal “hunting.” The valve shall operate in the cooling mode through the use of an internal check valve.

Blower Motor and Assembly
The blower shall be an oversized direct drive centrifugal type with a dynamically balanced wheel. The housing and wheel shall be designed for quiet low outlet velocity operation and of galvanized or galvalume steel construction. Tight blower housing geometry shall not be permitted. The blower housing shall be removable from the unit without disconnecting the supply air ductwork for servicing of the blower motor through a ‘works-in-a-drawer’ design. The high efficiency blower motor shall be either a 5 speed ECM or a variable speed ECM type. The blower motor shall be isolated from the housing by rubber grommets. The motor shall be permanently lubricated ball bearings and have thermal overload protection.

Electrical
A control section shall be located within the air handler compartment and shall contain either a 75VA or 100VA transformer, 24 volt activated. Transformers shall be protected by internal circuit breakers. Units shall be name-plated for use with time delay fuses or HACR circuit breakers. Unit controls shall be either communicating or 24 volt type. An Aurora AHB (control option C), a microprocessor-based controller interfaces with the ABC located in the compressor section to control unit operation, shall be optional. The AHB control shall provide operational sequencing, blower speed control, air coil freeze detection, condensate overflow sensing, auxiliary heat staging, field selectable options, and accessory output.

An integral circuit breaker shall be provided on all units employing 15 kW or 20 kW electric heat. The control shall maintain the blower operation 30 seconds after the compressor or electric heat inputs have terminated.

A terminal block with screw terminals will be provided for field control wiring. All units shall have knockouts for entrance of low and line voltage wiring. The blower motor and control box shall be harness plug wired for easy removal.

An optional Aurora Interface Diagnostic (AID) Tool shall communicate with the Aurora control allowing quick and easy access to setup, monitoring, and troubleshooting of any Aurora control. The device shall include the features of fault description and history, manual operation capability, sensor readings, timings, and other diagnostic tools.

Piping
Refrigerant connections shall be made using sweat copper joints. The condensate connections shall be a 3/4 in. NPT.
Revision Guide

<table>
<thead>
<tr>
<th>Pages:</th>
<th>Description:</th>
<th>Date:</th>
<th>By:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Document Creation</td>
<td>01 Mar. 2017</td>
<td>JM</td>
</tr>
</tbody>
</table>
Manufactured by
WaterFurnace International, Inc.
9000 Conservation Way
Fort Wayne, IN 46809
www.waterfurnace.com

Product: 5 Series - Air Handler
Type: R-410A
Size: 2-6 Tons
Document: Specification Catalog