SAH
Air Handler

Design Features
Factory Options
Accessories
Dimensional Data
Physical Data
Performance Data
Engineering Guide Specifications
Table of Contents

- Model Nomenclature ... 4
- Initial Inspection ... 4
- General Installation Information .. 5-12
- Electrical Data ... 13-15
- Wiring Schematics ... 16-25
- SAH 5 Speed ECM Blower Performance Data Option A 26-27
- Blower Performance Data Option C 28-30
- Unit Start Up ... 31
- Dimensional Data -DX Air Handler 32-33
- Replacement Procedures .. 34
- Service Parts ... 34
- Revision Guide .. 35
Nomenclature

Model
SAH – Series Air Handler

Unit Capacity
Refrigeration (DX)
022 MBTUH
026 MBTUH
030 MBTUH
036 MBTUH
042 MBTUH
048 MBTUH
060 MBTUH
066 MBTUH

Vintage
A = Factory Use Only

Electric Heat
00 – None
05 – 5kW (022 – 030 only) No Breakers
10 – 10kW (036 – 066 only) No Breakers
15 – 15kW (042 – 066 only) with Breakers
20 – 20kW (060 - 066 only) with Breakers

*Factory Use Only
Position
1 – Multi-position
Future Options
S – Standard
Voltage
1-208-230/60/1
Air Coil
R – Refrigerant
Controls/ Motor
A – Standard/ 5 Speed ECM
C – Aurora AHB/ Variable Speed ECM
TXV
1 – Factory Installed

Note: To field convert the SAH to bottomflow air discharge. The SAHBCK kit must be ordered separately.

Note: Air flow on the 060 and 066 units in the horizontal configurations should be limited to 1900 cfm in cooling mode, or condensate blow off may occur.

1. Only available with Aurora controls in the compressor section.

Initial Inspection

When the equipment is received, all items should be carefully checked against the bill of lading to be sure all crates and cartons have been received. Examine units for shipping damage, removing the units from the packaging if necessary.

Units in question should also be internally inspected. If any damage is noted, the carrier should make the proper notation on the delivery receipt, acknowledging the damage.
General Installation Information

Safety Considerations
Warning: Before performing service or maintenance operations on a system, turn off main power switches to the equipment. Electrical shock could cause personal injury.

Installing and servicing heating and air conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair or service heating and air conditioning equipment. Untrained personnel can perform the basic maintenance functions of cleaning coils and cleaning and replacing filters. All other operations should be performed by trained service personnel. When working on heating and air conditioning equipment, observe precautions in the literature, tags and labels attached to the unit and other safety precautions that may apply.

Physical Data

<table>
<thead>
<tr>
<th>Evaporator Coil</th>
<th>Air Handler Model Number (Refrigerant)</th>
<th>022</th>
<th>026</th>
<th>030</th>
<th>036</th>
<th>042</th>
<th>048</th>
<th>060</th>
<th>066</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Coil Total Face Area, ft² [m²]</td>
<td>3.89 [0.36]</td>
<td>4.86 [0.45]</td>
<td>5.83 [0.54]</td>
<td>6.81 [0.63]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube outside diameter - in. [mm]</td>
<td>3/8 [9.52]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of rows</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fins per inch</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction line connection - in. [mm] sweat</td>
<td>5/8 [15.87]</td>
<td>3/4 [19.05]</td>
<td>7/8 [22.23]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerant</td>
<td>R-410a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condensate drain connection - (FPT) in. [mm]</td>
<td>3/4 [19.05]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower Wheel Size (Dia x W), in. [mm]</td>
<td>9 X 7 (229 x 178)</td>
<td>10 X 8 (254 x 203)</td>
<td>11 x 10 (279 x 254)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower motor type/speeds</td>
<td>Variable Speed ECM/ 5 Speed ECM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower motor output - hp [W]</td>
<td>1/2 [373]</td>
<td>1 [746]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Standard - 1” [51mm] Field Supplied.</td>
<td>16 X 20 (406 x 508)</td>
<td>20 X 20 (508 x 508)</td>
<td>22 X 20 (559 x 508)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical characteristics (60hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating weight - lbs. [kg]</td>
<td>139 [63.0]</td>
<td>150 [68.0]</td>
<td>180 [81.6]</td>
<td>188 [85.3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follow all safety codes. Wear safety glasses and work gloves. Use a quenching cloth for brazing operations and have a fire extinguisher available.

Note: Local codes and regulations take precedent over any recommendations by the manufacturer. In addition to conforming to manufacturer’s and local municipal building codes, the equipment should also be installed in accordance with the National Electric Code and National Fire Protection Agency recommendations.
Air Handler Sizing Selection

The SAH Air Handlers are designed for R410a refrigerant and should be matched with Indoor/Outdoor Split series compressor section from your manufacturer according to the table below.

<table>
<thead>
<tr>
<th>Air Handler</th>
<th>Indoor Split Model (Single)</th>
<th>Indoor/Outdoor Split Model (Dual Capacity)</th>
<th>Rated Airflow (CFM)</th>
<th>Electric Heat (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAH022**1'R1S1</td>
<td>022</td>
<td>-</td>
<td>800</td>
<td>5</td>
</tr>
<tr>
<td>SAH026**1'R1S1</td>
<td>026</td>
<td>850</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SAH030**1'R1S1</td>
<td>030</td>
<td>1000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SAH036**1'R1S1</td>
<td>036</td>
<td>1200</td>
<td>5, 10</td>
<td></td>
</tr>
<tr>
<td>SAH038**1'R1S1</td>
<td>-</td>
<td>1200</td>
<td>5, 10</td>
<td></td>
</tr>
<tr>
<td>SAH042**1'R1S1</td>
<td>042</td>
<td>1300</td>
<td>10, 15</td>
<td></td>
</tr>
<tr>
<td>SAH048**1'R1S1</td>
<td>048</td>
<td>1500</td>
<td>10, 15</td>
<td></td>
</tr>
<tr>
<td>SAH049**1'R1S1</td>
<td>-</td>
<td>1500</td>
<td>10, 15</td>
<td></td>
</tr>
<tr>
<td>SAH060**1'R1S1</td>
<td>060</td>
<td>1800</td>
<td>10, 15, 20</td>
<td></td>
</tr>
<tr>
<td>SAH064**1'R1S1</td>
<td>-</td>
<td>1800</td>
<td>10, 15, 20</td>
<td></td>
</tr>
<tr>
<td>SAH066**1'R1S1</td>
<td>070</td>
<td>2000</td>
<td>10, 15, 20</td>
<td></td>
</tr>
<tr>
<td>SAH067**1'R1S1</td>
<td>-</td>
<td>2000</td>
<td>10, 15, 20</td>
<td></td>
</tr>
</tbody>
</table>

Moving and Storage

If the equipment is not needed for immediate installation it should be left in its shipping carton and stored in a clean, dry area. Units must only be stored or moved in the normal “up” orientation.

Unit Location

Locate the unit in an indoor area that allows for easy removal of the filter and access panels (the air handler units are not approved for outdoor installation). Location should have enough space for service personnel to perform maintenance or repair. Provide sufficient room to make refrigerant, electrical and duct connections. If the unit is located in a confined space, such as a closet, provisions must be made for return air to freely enter the space by means of a louvered door, etc. The air handler section may be installed on any level surface strong enough to support its weight. When installed in a closet or on a stand, it should be mounted on vibration absorbing material slightly larger than the base to minimize vibration transmission to the building structure.

When installed in an attic or above a drop ceiling, the installation must conform to all local codes. If the unit is suspended and installed in the horizontal position, the entire length of the unit should be supported. If the application requires the air handler to be installed on the attic floor then the unit should be set in a full size secondary drain pan. In this case the secondary drain pan should be set on top of a vibration absorbing mesh. The secondary drain pan is usually placed on a plywood base.

A secondary drain pan should be used when equipment is installed over a finished living area to provide protection from water damage in case of plugging of the air handler primary drain line. The secondary drain line should terminate somewhere that is easily visible by the homeowner. Be certain to show the homeowner the termination location of the secondary drain line and to explain its purpose.

Duct System

Many of the problems encountered with heating and cooling systems can be linked to improperly designed or installed duct systems. It is therefore highly important for a successfully operating system that the duct system be designed and installed properly.

The duct system should be sized to handle the design airflow quietly and efficiently. To maximize sound attenuation of the unit blower, the supply and return plenums should include an internal duct liner of fiberglass or constructed of ductboard for the first few feet. On systems employing a metal duct system, canvas connectors should be used between the unit and the ductwork. If air noise or excessive airflow is a problem, the blower speed can be changed. When installing a central air return grille in or near the living space, it is recommended to design the ductwork so that the grille is not in direct line with the return opening in the air handler. One or two elbows will also assure a quieter installation and system. Application of the unit to un-insulated metal ductwork in an unconditioned space will cause poor unit performance and allow condensation to form on the duct and possibly cause damage to the structure.

If the unit is connected to existing ductwork, check the duct system to ensure that it has the capacity to accommodate the air required for the unit application. If the duct is too small, as in the replacement of heating only systems, larger ductwork should be installed. All existing ductwork should be checked for leaks and repaired as necessary.
General Installation Information cont.

Condensate Deflector Shield
A condensate deflector shield comes attached to the vertical A-coil drain pan. If the unit is being installed in either the top flow or bottom flow configuration, no change is necessary.

If the air handler is being installed in either horizontal position, the condensate deflector shield will need to be removed from the vertical pan and placed on the horizontal pan. Remove the condensate deflector shield and the S-clips that attach it to the vertical pan. Reposition the condensate deflector shield and S-clips on the horizontal drain pan.

On units that have control option 'C' the condensate sensor bracket will also need to be moved and attached to the horizontal pan.

Note: Condensate deflector shield should be installed in the S-clip section which is inside the drain pan edge.
General Installation Information cont.

Condensate Drain
To facilitate complete condensate removal, the air handler should be mounted level or slightly pitched toward the drain. The drain line contains cold water and should be insulated in unconditioned spaces to avoid drain line condensation from dripping on ceiling, etc. The drain pan has a primary and secondary drain connection. The air handler drain connections must be connected to a drain line and pitched away from the unit a minimum of 1/8” per foot to allow the condensate to flow away from the air handler. A trap must be installed in the drain line below the bottom of the drain pan to ensure free condensate flow (units are not internally trapped). The primary condensate drain must be terminated to an open drain or sump. Do not connect the condensate drain to a closed waste system. An open vertical air vent should be installed to overcome line length, friction and static pressure. It is recommended that the secondary drain be connected to a drain line for all units. The secondary drain should be run to an area where the homeowner will notice it draining which means that the primary drain is blocked. The drain line should not be smaller than the drain connection at the condensate pan. If the air handler is located in an unconditioned space, water in the trap may freeze. Since the air handler is under negative pressure it is recommended to prime the traps so air is not drawn through the condensate drain. It is recommended that the trap material be of a type that will allow for expansion of water when it freezes. All unused drain ports should be capped. Drain lines must be in conformance with local codes.

CAUTION: Threaded drain connection should be hand-tightened, plus no more than 1/16 turn.

The drain pan connections are designed to ASTM Standard D 2466 Schedule 40. Use 3/4” PVC or non-corrosive metal threaded pipe. Since the drains are not subject to any pressure it is not necessary to use Schedule 40 pipe for drain lines.

Air Handler Configuration
The Air Handler is factory configured for upflow and horizontal right hand air discharge installation. For bottomflow or horizontal right hand discharge, certain field modifications are required.

Warning: Do not lift or reposition the ‘A’ coil by grasping the aluminum tube header or distributor. This could cause a tubing fracture resulting in a refrigerant leak.
General Installation Information cont.

Bottomflow Application
To convert the SAH Series air handler for bottomflow applications follow the steps below:
1. With the air handler in the vertical top flow position remove all access panels and the refrigerant line panel.
2. Carefully slide the air coil assembly out of the cabinet.
3. Rotate the cabinet 180° so the blower outlet is facing down.
4. Install the SAHBCK bottom flow conversion kit per instructions in the kit. Failure to install this kit will result in condensate blow-off from the ‘A’ coil into the cabinet and ductwork.
5. Place the air coil assembly back on the air coil support brackets.
6. Reattach the refrigerant line panel and the other access panels.
7. Bottom air discharge units should be sealed well to the floor to prevent air leakage.

NOTE: Air Handlers with control option 'C', which are installed in the bottomflow or horizontal left position, will have to re-route the condensate sensor and FP2 sensor wires. The wires can be routed as shown below. A section of electrical spiral wrap is included in the Installers Kit. Wrap the section of wire that is placed in the corner with the wrap to protect the wires.

Horizontal Left Air Discharge Application
To convert the SAH Series air handler for horizontal left air discharge applications follow the steps below:
1. With the air handler in the vertical top flow position remove all access panels and the refrigerant line panel.
2. Carefully slide the air coil assembly out of the cabinet.
3. Remove and reposition the condensate deflector from the vertical pan to the horizontal pan.
4. Rotate the cabinet 180° so the blower outlet is facing down.
5. Place the air coil assembly back on the air coil support brackets.
6. Reattach the refrigerant line panel and the other access panels.
7. Position the air handler in the left hand horizontal application.
8. Remove the drain pan plugs from the horizontal pan and screw them in the vertical drain pan.
9. Reattach the refrigerant line panel and the other access panels.
10. If the unit is suspended, the entire length of the cabinet should be supported.

Important: When removing the coil, there is possible danger of equipment damage and personal injury. Be careful when removing the coil assembly from the unit.

Note: Air flow on the 060 and 066 units in the horizontal configuration should be limited to 1900 CFM in cooling mode, or condensate blow off may occur.
General Installation Information cont.

Air Handler Installation

The air handler is attached to the shipping pallet with four external shipping brackets.

An air filter must always be installed upstream of the air coil on the return air side of the air handler and must be field supplied. Filtration can be added external to the unit or the integral filter rack may be used. A 1” filter access rack has been built into the cabinet. Remove the filter access cover and install the proper sized filter. Standard 1” size permanent or throw away filter may be used. If there is limited access to the filter rack for normal maintenance, it is suggested that a return air filter grille be installed. Be sure that the return duct is properly installed and free of leaks to prevent dirt and debris from bypassing the filter and plugging the air coil.

The cabinet should be sealed so that unconditioned warm air can not enter the cabinet. Warm air will introduce moisture into the cabinet which could result in water blow-off problems, especially when installed in an unconditioned space. Make sure that the liquid line, suction line and drain line entry points into the cabinet are well sealed. Use the butyl tape supplied with the air handler to seal around the copper lines entering the cabinet.

All wall penetrations should be sealed properly. The line set should not come into direct contact with water pipes, floor joists, wall studs, duct work, floors, walls and brick. The line set should not be suspended from joists or studs with a rigid wire or strap which comes into direct contact with the tubing. Wide hanger straps which conform to the shape of the tubing are recommended. All line sets should be insulated with a minimum of 3/8” closed cell insulation. The line set insulation should be pliable, and should completely surround the refrigerant line. As in all R-410a equipment, a reversible liquid line filter drier is required to insure all moisture is removed from the system. This drier is factory installed in the Manufacturers Split compressor section. This drier should be replaced whenever “breaking into” the system for service. All exterior insulation should be painted with UV resistant paint or covering to insure long insulation life.

Connection to the Coil

Connect the refrigerant line set to the ‘A’ coil tubes. Nitrogen should be bled through the system at 2 to 3 PSI to prevent oxidation inside the refrigerant tubing. Use a low silver phos-copper braze alloy on all brazed connections. The Split compressor section is shipped with a factory charge and the service valves are not to be opened until the line set and air handler have been leak tested, purged and evacuated. A damp towel or heat sink should be used on the service valves to prevent damage caused by excessive heat.

Refer to the Refrigerant Line Sizing table to determine the proper line set configuration for the system being installed. Line sets over 60 feet in length are not recommended. If the line set is kinked or deformed and cannot be reformed, the bad section of pipe should be replaced. A restricted line set will affect unit performance. Line sets should be routed as directly as possible, avoiding any unnecessary bends and turns.

Leak Testing

The refrigeration line set must be pressurized and checked for leaks before purging and charging the unit. To pressurize the line set, attach refrigerant gauges to the service ports and add an inert gas (nitrogen or dry carbon dioxide) until pressure reaches 60 to 90 PSIG. Never use oxygen or acetylene to pressure test the system. Use an electronic leak detector or a good quality bubble solution to detect leaks on all connections made in the field. Be sure to check the service valve ports and stems for leaks. If a leak is found, repair it and repeat the above steps. For safety reasons do not pressurize the system above 150 PSIG. Purge pressure from the line set slowly when the pressure test is complete. The system is now ready for evacuation.

System Evacuation

Ensure that the line set and air coil are evacuated before opening service valves. The line set and air coil must be evacuated to 250 micron with a good quality vacuum pump and use a vacuum gauge to ensure that air and moisture are removed. With the system shut off from the vacuum pump a sufficient system vacuum is achieved when a 500 micron vacuum can be held for 30 minutes. A fast rise to atmospheric pressure indicates a leak, while a slower rise to around 1500 microns indicates moisture is still present in the system and further evacuation is required.
General Installation Information cont.

Refrigeration

The SAH Series air handlers are supplied with an expansion device. The txv supplied has an internal check valve so no external check valve is necessary. Check sub-cooling and superheat, refrigerant charge and txv may require further adjustment.

TXV Superheat Adjustment Procedure (see figure 4)

Txv's may require adjustment for a specific application.

1. Remove the seal cap from the bottom of the valve.
2. Turn the adjustment screw counterclockwise to increase superheat and clockwise to decrease superheat. One complete 360° turn changes the superheat approximately 1-2°F. You may need to allow as much as 30 minutes after the adjustment is made for the system to stabilize.
3. Once the proper superheat setting has been achieved replace and tighten the seal cap.

Warning – There are 12 total (360°) turns on the superheat adjustment stem from wide open to fully closed. When adjusting the superheat stem counterclockwise (superheat increase) and the stop is reached, any further counterclockwise turning adjustment will damage the valve.

Charging the System

Refer to the compressor section Installation Manual for charging the system, checking subcooling/superheat and unit operating parameters. Refer to the Refrigerant Line Sizing table for initial refrigeration charge amounts used with the split.

Line Set Sizes

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Air Handler</th>
<th>20 feet</th>
<th>40 feet</th>
<th>60 feet</th>
<th>Split Factory Charge (oz.)</th>
<th>*Charge Amount with SAH Air Handler (oz.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>022</td>
<td>SAH022</td>
<td>5/8" OD</td>
<td>3/8" OD</td>
<td>5/8" OD</td>
<td>3/8" OD</td>
<td>56</td>
</tr>
<tr>
<td>036</td>
<td>SAH036</td>
<td>5/8" OD</td>
<td>3/8" OD</td>
<td>3/8" OD</td>
<td>3/8" OD</td>
<td>56</td>
</tr>
<tr>
<td>042</td>
<td>SAH042</td>
<td>3/4" OD</td>
<td>3/8" OD</td>
<td>3/4" OD</td>
<td>3/8" OD</td>
<td>56</td>
</tr>
<tr>
<td>048</td>
<td>SAH048</td>
<td>3/4" OD</td>
<td>3/8" OD</td>
<td>7/8" OD</td>
<td>3/8" OD</td>
<td>56</td>
</tr>
<tr>
<td>060</td>
<td>SAH060</td>
<td>7/8" OD</td>
<td>1/2" OD</td>
<td>7/8" OD</td>
<td>1/2" OD</td>
<td>56</td>
</tr>
<tr>
<td>070</td>
<td>SAH066</td>
<td>7/8" OD</td>
<td>1/2" OD</td>
<td>7/8" OD</td>
<td>1/2" OD</td>
<td>56</td>
</tr>
<tr>
<td>026</td>
<td>SAH026</td>
<td>5/8" OD</td>
<td>3/8" OD</td>
<td>3/4" OD</td>
<td>3/8" OD</td>
<td>56</td>
</tr>
<tr>
<td>038</td>
<td>SAH036</td>
<td>5/8" OD</td>
<td>3/8" OD</td>
<td>3/4" OD</td>
<td>3/8" OD</td>
<td>56</td>
</tr>
<tr>
<td>049</td>
<td>SAH048</td>
<td>3/4" OD</td>
<td>3/8" OD</td>
<td>7/8" OD</td>
<td>3/8" OD</td>
<td>56</td>
</tr>
<tr>
<td>064</td>
<td>SAH060</td>
<td>7/8" OD</td>
<td>1/2" OD</td>
<td>7/8" OD</td>
<td>1/2" OD</td>
<td>56</td>
</tr>
<tr>
<td>072</td>
<td>SAH066</td>
<td>7/8" OD</td>
<td>1/2" OD</td>
<td>7/8" OD</td>
<td>1/2" OD</td>
<td>56</td>
</tr>
</tbody>
</table>

CAPACITY MULTIPLIER

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
<th>0.985</th>
<th>0.97</th>
</tr>
</thead>
</table>

Notes:

- The “Charge Amount with SAH Air Handler” column is based on the charge amount for a SAH Air Handler + Compressor Section/Split.
- Additional charge will need to be added accordingly for line set length.
- After charge is added, additional adjustments can be made to get appropriate subcooling and superheat measurements.
- Additional charge for R410A is 0.50 oz. per ft. for 3/8" and 1.0 oz. per ft. for 1/2" tube.
- Longer line sets will significantly reduce capacity and efficiency of the system as well as adversely effect the system reliability due to poor oil return.

1/13/2017
General Installation Information cont.

Figure 4:
Decrease Superheat: Open Valve
Increase Superheat: Close Valve
Electrical Data

All field wiring must comply with local and national fire, safety and electrical codes. Be sure the available power is the same voltage and phase as that shown on the unit serial plate. Refer to the unit Electrical Data table for fuse and circuit breaker sizing. Line voltage power should be supplied to the breakers on air handlers with 15kW and 20kW heater kits (see the electric heat control section picture).

15kW and 20kW Wiring Instructions

If two separate circuits are used to supply power to the auxiliary heat kit, the installer will need to verify that each leg of the auxiliary circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter lead on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.

On air handlers with 15 and 20kW heater kits, a circuit breaker cover is provided. The installer can place the cover on the outside of the cabinet to seal the breaker opening. The cover will still allow operation of the breaker switches.

On air handlers with no electric heat installed, or with 5kW and 10kW heater kits the power should be supplied to L1 and L2 lugs on PB (see air handler control section picture).

15kW and 20kW Heater Kits with Control Option C

On units with control option C that are equipped with factory installed 15 or 20kW heater kits, the installer will need to route the wires through the electric heat current transducer that is connected to the BLACK wires. The wires that are identified with a label will need to pass through the center of the transducer, and will need to be disconnected from the breakers screw lugs. Once the wires are passed through the transducer, reconnect to the breakers and secure tightly in the screw lugs. On 5 and 10kW heater kits, the electric heat current transducer is factory installed.

SAH Auxiliary Heat Minimum Blower Settings

<table>
<thead>
<tr>
<th>SAH Model</th>
<th>5-Speed ECM Minimum Blower Setting</th>
<th>VS ECM Minimum Blower Setting</th>
<th>Heater kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>022</td>
<td>5</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>026</td>
<td>5</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>030</td>
<td>5</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>036</td>
<td>4</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>036</td>
<td>5</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>042</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>042</td>
<td>5</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>048</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>048</td>
<td>5</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>060</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>060</td>
<td>4</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>066</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>066</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>066</td>
<td>4</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>066</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Air flow level for auxiliary heat (Aux) must be equal to or above the minimum setting in this table.

Air Handler Control Section:

Power should be supplied to PB on air handlers with no electric heat and 5kW or 10kW heaters.

Electric Heat Control Section:

Power should be supplied to the breakers on air handlers with 15kW and 20kW heaters.
Electrical Data cont.

<table>
<thead>
<tr>
<th>Model</th>
<th>Electric Heat Capacity</th>
<th>Supply Circuit</th>
<th>Rated Voltage</th>
<th>Voltage Min/Max</th>
<th>Fan Motor FLA</th>
<th>Heater Ampacity</th>
<th>Total Unit FLA</th>
<th>Minimum Circuit Ampacity</th>
<th>Maximum Fuse/ HACR</th>
</tr>
</thead>
<tbody>
<tr>
<td>022</td>
<td>4.8 16,382</td>
<td>single</td>
<td>208v</td>
<td>0.0 -</td>
<td>4.0 17.3 20.0</td>
<td>21.3 24.0</td>
<td>26.6 30.0</td>
<td>30 10</td>
<td>10 10</td>
</tr>
<tr>
<td>026</td>
<td>4.8 16,382</td>
<td>single</td>
<td>208v</td>
<td>0.0 -</td>
<td>4.0 17.3 20.0</td>
<td>21.3 24.0</td>
<td>26.6 30.0</td>
<td>30 10</td>
<td>10 10</td>
</tr>
<tr>
<td>030</td>
<td>4.8 16,382</td>
<td>single</td>
<td>208v</td>
<td>0.0 -</td>
<td>4.0 17.3 20.0</td>
<td>21.3 24.0</td>
<td>26.6 30.0</td>
<td>30 10</td>
<td>10 10</td>
</tr>
<tr>
<td>036</td>
<td>4.8 16,382</td>
<td>single</td>
<td>208v</td>
<td>0.0 -</td>
<td>4.0 17.3 20.0</td>
<td>21.3 24.0</td>
<td>26.6 30.0</td>
<td>30 10</td>
<td>10 10</td>
</tr>
<tr>
<td>042</td>
<td>9.6 32,765</td>
<td>single</td>
<td>208v</td>
<td>0.0 -</td>
<td>4.0 20.0 21.3</td>
<td>21.6 25.0</td>
<td>25 25</td>
<td>25 15</td>
<td>15 15</td>
</tr>
<tr>
<td>048</td>
<td>9.6 32,765</td>
<td>single</td>
<td>208v</td>
<td>0.0 -</td>
<td>4.0 20.0 21.3</td>
<td>21.6 25.0</td>
<td>25 25</td>
<td>25 15</td>
<td>15 15</td>
</tr>
<tr>
<td>060</td>
<td>14.4 49,147</td>
<td>L1/L2/L3/L4</td>
<td>208v</td>
<td>0.0 -</td>
<td>4.0 20.0 21.3</td>
<td>21.6 25.0</td>
<td>25 25</td>
<td>25 15</td>
<td>15 15</td>
</tr>
<tr>
<td>066</td>
<td>14.4 49,147</td>
<td>L1/L2/L3/L4</td>
<td>208v</td>
<td>0.0 -</td>
<td>4.0 20.0 21.3</td>
<td>21.6 25.0</td>
<td>25 25</td>
<td>25 15</td>
<td>15 15</td>
</tr>
</tbody>
</table>

Rev. Rated Voltage of 208/230/60/1

HACR circuit breaker in USA only

1/10/17
Electrical Data cont.

Standard Non-Communicating Control Option A

Field low voltage point to point wiring:

<table>
<thead>
<tr>
<th>From Thermostat</th>
<th>To Air Handler</th>
<th>To Compressor Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td>R</td>
<td>G</td>
<td>R</td>
</tr>
<tr>
<td>G</td>
<td>O</td>
<td>G</td>
</tr>
<tr>
<td>O</td>
<td>Y1</td>
<td>O</td>
</tr>
<tr>
<td>Y1</td>
<td>Y2</td>
<td>Y1</td>
</tr>
<tr>
<td>Y2</td>
<td>W</td>
<td>Y2</td>
</tr>
<tr>
<td>W2</td>
<td>L</td>
<td>W</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Air Handler transformer must be 75VA.

Communicating Thermostat Control Option A

Field low voltage point to point wiring:

<table>
<thead>
<tr>
<th>From Communicating Thermostat</th>
<th>To ABC P7 in Compressor Section</th>
<th>From ABC Outputs</th>
<th>To Air Handler</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Air Handler transformer must be 75VA.

Non-Communicating Thermostat Control Option C

Field low voltage point to point wiring:

<table>
<thead>
<tr>
<th>From Thermostat</th>
<th>To ABC in Compressor Section</th>
<th>From ABC P7 in Compressor Section</th>
<th>To PB2 in Air Handler</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Y1</td>
<td>Y1</td>
<td>Y1</td>
<td>Y1</td>
</tr>
<tr>
<td>Y2</td>
<td>Y2</td>
<td>Y2</td>
<td>Y2</td>
</tr>
<tr>
<td>W2</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Air Handler transformer must be 100VA.

Communicating Thermostat Control Option C

Field low voltage point to point wiring:

<table>
<thead>
<tr>
<th>From Communicating Thermostat</th>
<th>To Air Handler PB3</th>
<th>To Compressor Section ABC Board P7</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Air Handler transformer must be 100VA.
Wiring Schematics

SAH Air Handler Control Option A Schematic

Air Handler No Electric Heat

Legend:
- Factory Low voltage wiring
- Factory Line voltage wiring
- Field low voltage wiring
- Field line voltage wiring
- Optional block
- DC Voltage PCB traces
- Internal junction
- Quick connect terminal
- Thermal Limit Switch
- Field wire lug
- Ground
- N.O., N.C.
- ER1 to ER4 - Aux heat stage relays
- Light emitting diode - Green
- 208-230V Relay coil
- Electric Heat Contactor
- Polarized connector
- Power block
- Heater element
- Breaker

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.

2 – Low voltage wiring CLASS 2.

3 – 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.
Wiring Schematics cont.

SAH Air Handler Control Option A Schematic

Air Handler 5kW Electric Heat

Legend

- Factory Low voltage wiring
- Factory Line voltage wiring
- Field low voltage wiring
- Field Line voltage wiring
- Optional block
- DC Voltage PCB traces
- Internal junction
- Quick connect terminal
- TS - Thermal Limit Switch
- L1 - Field wire lug
- N.O., N.C.
- ER1 to ER4 - Aux heat stage relays
- Light emitting diode - Green
- 208-230V Relay coil
- EHC - Electric Heat Contactor
- Blk/Wh - Black/White
- Yellow
- White
- Blue
- Red
- Tan
- Grey
- 12V
- Thermostat

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.
2 – Low voltage wiring CLASS 2.
3 – 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.

WIRE 24V THERMOSTAT AS SHOWN CONNECTED TO THE STRIP WIRES ALREADY CONNECTED TO TB. DO NOT CONNECT DIRECTLY TO THE TB TERMINALS. DAMAGE TO THE STAT MAY OCCUR. TB CAN BE USED TO CONNECT TO THE ABC BOARD IN THE COMPRESSOR SECTION.
Wiring Schematics cont.

SAH Air Handler Control Option A Schematic

Air Handler 10kW Electric Heat

Notes:

1 – To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.

2 – Low voltage wiring CLASS 2.

3 – 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.

Legend

- Factory Low voltage wiring
- Field low voltage wiring
- Field line voltage wiring
- Optional block
- DC Voltage PCB traces
- Internal junction
- Quick connect terminal
- Thermal Limit Switch
- Field wire lug
- Ground
- N.O. N.C.
- ERT to EMA - Aux heat stage relays
- N.C. - heater element
- Breaker
- 208-230V Relay coil
- Electric Heat Contactor
- Light emitting diode - Green

WIRE 24V THERMOSTAT AS SHOWN CONNECTED TO THE STRIP WIRES ALREADY CONNECTED TO TB. DO NOT CONNECT DIRECTLY TO THE TB TERMINALS. DAMAGE TO THE STAT MAY OCCUR. TB CAN BE USED TO CONNECT TO THE ABC BOARD IN THE COMPRESSOR SECTION.

NOTE 3

24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.
Wiring Schematics cont.

SAH Air Handler Control Option A Schematic

97P901-04

Air Handler 15kW Electric Heat

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.
2 – Use manufacturer’s part number 19P592-01 (jumper bar assembly) when single source power is required.
3 – Low voltage wiring CLASS 2.
4 – 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.

Legend

WIRE 24V THERMOSTAT AS SHOWN CONNECTED TO THE STRIP WIRES ALREADY CONNECTED TO TB DO NOT CONNECT DIRECTLY TO THE TB TERMINALS. DAMAGE TO THE STAT MAY OCCUR. TB CAN BE USED TO CONNECT TO THE ABC BOARD IN THE COMPRESSOR SECTION

Dual Power Supply Connections

If two separate circuits are used to supply power to the auxiliary heat kit, the Installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.
Wiring Schematics cont.

SAH Air Handler Control Option A Schematic

Air Handler 20kW Electric Heat

Factory Low voltage wiring

Legend

- Light emitting diode - Green
- 208/230V Relay coil
- Electric Heat Contactor
- Polarized connector
- Power block
- Heater element
- Breaker
- Transformer
- Blk/Wh
- 24V
- L2
- L1
- G
- C
- R
- Y2
- Y1
- W1
- N
- TB
- L
- 24V THERMOSTAT AS SHOWN
- CONNECTED TO THE STRIP WIRES ALREADY CONNECTED TO TB. DO NOT CONNECT DIRECTLY TO THE TB TERMINALS. DAMAGE TO THE STAT MAY OCCUR. TB CAN BE USED TO CONNECT TO THE ABC BOARD IN THE COMPRESSOR SECTION

Notes:

1 – To operate in 208V mode replace the blue transformer wire connected to PB-L2 with red transformer wire.

2 – Use manufacturer’s part number 19P592-01 (jumper bar assembly) when single source power is required.

3 – Low voltage wiring CLASS 2.

4 – 24V Thermostat must be wired as shown to the loose wires using wire nuts. DO NOT CONNECT THERMOSTAT TO TB.

Dual Power Supply Connections

If two separate circuits are used to supply power to the auxiliary heat kit, the Installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 at the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.
Wiring Schematics cont.

SAH Air Handler Control Option C Schematic

Unit Power 208-230/60/1

Non-Communicating Thermostat will connect to the P1 connection on the ABC board in the compressor section. A 4-conductor, 20 AWG wire will need to connect from the P1 ABC control board in the split unit to the TO ABC (C R + -) power block (PB2) in the Air Handler.

Notes:
1. To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2. Low voltage wiring CLASS 2.
3. DIP switch 1 on SW1 must be set in the OFF position.

Legend:
- Factory Low voltage wiring
- Factory Line voltage wiring
- Field Low voltage wiring
- Field Line voltage wiring
- Optional block
- DC Voltage PCB traces
- Internal junction
- Quick connect terminal
- Thermal Limit Switch
- Field wire lug
- Ground
- N.O., N.C.
- Light emitting diode - Green
- Fused Limit
- Breaker
- Polarized connector
- Power block
- DIP package 4 position
- Heater element
- Current Transducer
Wiring Schematics cont.

SAH Air Handler Control Option C Schematic

97P903-02

Air Handler 5kW Electric Heat

Notes:
1. To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2. Low voltage wiring CLASS 2.
3. DIP switch 1 on SW1 must be set in the OFF position.

Legend
- Factory Low voltage wiring
- Factory Line voltage wiring
- Field Line voltage wiring
- Field Line voltage wiring
- DIP package 4 position
- Power block
- Heater element
- Current Transducer
- Light emitting diode - Green
- Field wire lug
- Fused Limit
- Polarized connector
- Quick connect terminal
- DC voltage PCB traces
- Internal junction
- Thermal Limit Switch
- Field wire lug
- Ground
- N.O., N.C.
Communicating Thermostat will connect to the COMM STAT (C R + -) power block PB3 in the air handler. A 4-conductor, 20AWG wire will need to connect from the TO ABC (C R + -) power block (PB2) in the Air Handler to the ABC P7 (See detail 'A' on schematic) connection on the ABC board in the compressor section.

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2 – Low voltage wiring CLASS 2.
3 – DIP switch 1 on SW1 must be set in the OFF position.
Wiring Schematics cont.

SAH Air Handler Control Option C Schematic

Air Handler 15kW Electric Heat

Dual Power Supply Connections

If two separate circuits are used to supply power to the auxiliary heat kit, the Installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2 – Use manufacturer’s part number 19P592-01 (jumper bar assembly) when single source power is required.
3 – Low voltage wiring CLASS 2.
4 – DIP switch 1 on SW1 must be set in the OFF position.
Wiring Schematics cont.

SAH Air Handler Control Option C Schematic

Air Handler 20kW Electric Heat

Dual Power Supply Connections
If two separate circuits are used to supply power to the auxiliary heat kit, the Installer will need to verify that each leg of the auxiliary heat circuit breakers are wired from the power supply correctly in order for the electric heat kit to operate properly. This can be done by measuring the supply side voltage of the auxiliary heat circuit breakers. Put a voltmeter on the L2 side of Circuit Breaker One and on the L2 side of Circuit Breaker Two. The voltmeter should read approximately 0 volts. If the meter reads high voltage, the auxiliary heat breakers need to be rewired so that breakers in the auxiliary heat kit match the wiring of the Disconnect Panel breakers. Meaning, L1 and L2 from one breaker in the disconnect panel must connect to L1 and L2 at one of the auxiliary heat circuit breakers and L1 and L2 from the other breaker in the disconnect panel must connect to L1 and L2 of the other auxiliary heat circuit breaker, making sure that the L1 and L2 from each disconnect breaker matches the L1 and L2 at each of the auxiliary heat breakers.

Notes:
1 – To operate in 208V mode replace the blue transformer wire connected to PB1-L2 with red transformer wire.
2 – Use manufacturer’s part number 19P592-01 (jumper bar assembly) when single source power is required.
3 – Low voltage wiring CLASS 2.
4 – DIP switch 1 on SW1 must be set in the OFF position.
Blower Performance 5 Speed ECM Control Option A

<table>
<thead>
<tr>
<th>Model</th>
<th>Motor Speed</th>
<th>Motor Tap</th>
<th>T'stat Connection</th>
<th>Blower Size</th>
<th>Motor HP</th>
<th>Airflow (cfm) at External Static Pressure (in. wg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>High 5 W</td>
<td>9 x 7</td>
<td>1/2</td>
<td>1130 115 110 1090 1080 1065 1050 1040 1030 1015 1000 980 950</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med High 4 Y2*</td>
<td>9 x 7</td>
<td>1/2</td>
<td>1040 1025 1010 1000 990 985 980 975 960 945 930 915 900 880 850</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med 3</td>
<td></td>
<td></td>
<td>950 935 920 905 890 875 860 845 830 815 800 780 760 730</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med Low 2 Y1</td>
<td></td>
<td></td>
<td>860 845 830 815 800 785 770 755 740 720 700 680 660 640</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low 1 G</td>
<td></td>
<td></td>
<td>740 720 700 680 660 645 630 615 600 580 560 540 520 500</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td>High 5 W</td>
<td>9 x 7</td>
<td>1/2</td>
<td>1130 115 110 1090 1080 1065 1050 1040 1030 1015 1000 980 950</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med High 4 Y2*</td>
<td>9 x 7</td>
<td>1/2</td>
<td>1040 1025 1010 1000 990 985 980 975 960 945 930 915 900 880 850</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med 3</td>
<td></td>
<td></td>
<td>950 935 920 905 890 875 860 845 830 815 800 780 760 730</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med Low 2 Y1</td>
<td></td>
<td></td>
<td>860 845 830 815 800 785 770 755 740 720 700 680 660 640</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low 1 G</td>
<td></td>
<td></td>
<td>740 720 700 680 660 645 630 615 600 580 560 540 520 500</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>High 5 W</td>
<td>10 x 8</td>
<td>1/2</td>
<td>1220 1205 1190 1180 1170 1160 1150 1140 1130 1115 1100 1090 1080 1070</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med High 4 Y2*</td>
<td>10 x 8</td>
<td>1/2</td>
<td>1350 1335 1320 1315 1310 1305 1300 1295 1290 1285 1280 1275 1270 1265</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med 3 Y1</td>
<td></td>
<td></td>
<td>950 935 920 905 890 875 860 845 830 815 800 780 760 730</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med Low 2 Y1</td>
<td></td>
<td></td>
<td>1000 980 960 940 920 905 890 870 850 825 800 780 760 730</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low 1 G</td>
<td></td>
<td></td>
<td>990 915 840 800 760 730 700 680 660 630 600 570 540 510</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>High 5 W</td>
<td>11 x 10</td>
<td>1</td>
<td>1960 1945 1930 1915 1900 1880 1865 1845 1830 1815 1790 1750 1700</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med High 4 Y2*</td>
<td>11 x 10</td>
<td>1</td>
<td>1790 1775 1760 1745 1730 1715 1700 1685 1670 1650 1635 1620 1605</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med 3</td>
<td></td>
<td></td>
<td>1700 1685 1670 1650 1630 1615 1600 1585 1570 1555 1540 1525 1510</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med Low 2 Y1</td>
<td></td>
<td></td>
<td>1630 1560 1600 1520 1560 1530 1510 1490 1470 1450 1430 1410 1390</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low 1 G</td>
<td></td>
<td></td>
<td>1490 1445 1400 1375 1350 1325 1300 1270 1240 1210 1180 1150 1120</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>High 5 W</td>
<td>11 x 10</td>
<td>1</td>
<td>2210 2205 2190 2170 2150 2130 2110 2090 2070 2050 2030 2010 1990</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med High 4 Y2*</td>
<td>11 x 10</td>
<td>1</td>
<td>2030 2025 2000 1985 1970 1950 1930 1915 1890 1870 1850 1830 1810</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med 3</td>
<td></td>
<td></td>
<td>1850 1835 1820 1805 1790 1775 1760 1745 1730 1715 1690 1675 1660</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med Low 2 Y1</td>
<td></td>
<td></td>
<td>1770 1750 1730 1710 1690 1670 1650 1630 1610 1590 1570 1550 1530</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low 1 G</td>
<td></td>
<td></td>
<td>1570 1560 1540 1520 1500 1480 1460 1440 1420 1400 1380 1360 1340</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Factory speed settings are in bold. Airflow values are with dry coil and standard filter. For wet coil performance first calculate the face velocity of the air coil (Face Velocity [fps] = Airflow [cfm] / Area [sq ft]). Then for velocities of 200 fps reduce the static capability by 0.03 in. wg, 400 fps by 0.08 in. wg, 600 fps by 0.12 in. wg, and 800 fps by 0.16 in. wg. Highest setting is for auxiliary heat (W) and lowest setting is for constant blower (G). The “Y1” and “Y2” settings must be between the “G” and “W” settings.

*Single speed compressor section units will need to remove the TAN wire on the 5 speed motor and replace it with the RED wire. Tape end and secure the TAN wire.

The SAH Air Handler blower is factory wired for dual speed compressor section operation.
SAH 5 Speed ECM Blower Performance Data Option A cont.

5-Speed ECM Constant Torque Motors

The 5-Speed ECM is a ‘Constant Torque’ ECM motor and delivers air flow similar to a PSC but operates as efficiently as an ECM Motor. Because it’s an ECM Motor, the 5-Speed ECM can ramp slowly up to down like the ECM motor. There are 5 possible speed taps available on the 5-Speed ECM motor with #1 being the lowest airflow and #5 being the highest airflow. These speed selections are preset at the time of manufacture and are easily changed in the field if necessary.

If more than one tap are energized at the same time, built in logic gives precedence to the highest tap number and allows air flow to change with G, Y1, Y2 and W signals. Each of those 5 speeds has a specific ‘Torque’ value programmed into the motor for each speed selection. As static pressure increases, airflow decreases resulting in less torque on the rotor. The motor responds only to changes in torque and adjusts its speed accordingly.

The 5-Speed ECM motor is powered by line voltage but the motor speed is energized by 24 VAC.

5-Speed ECM Benefits:
- High Efficiency
- Soft Start
- 5 speeds with up to 4 speeds on-line
- Built-in logic allows air flow to change with G, Y1, Y2 and W signals
- Super efficient low airflow continuous blower setting.

Setting Blower Speed - 5-Speed ECM

5-Speed ECM blower motors have five (5) speeds of which three (3) are selectable on single speed and four (4) are selectable on dual capacity.

Caution: Disconnect all power before performing this operation.

5-Speed ECM Motor Connections - Single Speed Splits

5-Speed ECM Motor Connections - Dual Capacity Splits
Blower Performance Data Option C

Blower Performance Variable Speed ECM Control Option C

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MAX ESP</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>022</td>
<td>0.50</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>0.50</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>0.50</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1100</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>0.50</td>
<td>550</td>
<td>650</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>950</td>
<td>1050</td>
<td>1100</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>0.75</td>
<td>650</td>
<td>750</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1150</td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
<td>1700</td>
</tr>
<tr>
<td>048</td>
<td>0.75</td>
<td>650</td>
<td>750</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1150</td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td>1600</td>
<td>1700</td>
</tr>
<tr>
<td>060</td>
<td>0.75</td>
<td>950</td>
<td>1100</td>
<td>1200</td>
<td>1350</td>
<td>1500</td>
<td>1650</td>
<td>1700</td>
<td>1800</td>
<td>2000</td>
<td>Aux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>0.75</td>
<td>950</td>
<td>1100</td>
<td>1200</td>
<td>1350</td>
<td>1500</td>
<td>1650</td>
<td>1700</td>
<td>1800</td>
<td>2000</td>
<td>Aux</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factory settings are at recommended G-L-H-Aux speed settings.
L-H settings MUST be located within boldface CFM range.
“Aux” is factory setting for auxiliary/emergency heat and must be equal to or above the “H” setting as well as at least the minimum required for the auxiliary heat package.
“G” may be located anywhere within the airflow table.
CFM is controlled within 5% up to the maximum ESP.
Max ESP includes allowance for wet coil.
SAH Control Option C AHB Board

The SAH Air Handler with the ‘Advanced’ control option expands on the capability of the Aurora ‘Advanced’ Control (ABC and AXB) in the compressor section, by adding the AHB board in the air handler.

NOTE: The Energy Monitoring and Leaving Air Temperature features at the AHB board are dependent on the AXB board in the compressor section.

It is highly recommended that the installing/servicing contractor use an Aurora Interface and Diagnostic Tool (AID) when installing and servicing an Aurora ‘Advanced’ control system.

The AHB board includes the following features:

AHB DIP Switch

DIP 1 - ID: This is the AHB ModBus ID and should always read Off.

DIP 2 & 3 - Future Use

DIP 4 & 5 - Accessory Relay2: A second, DIP configurable, accessory relay is provided that can be cycled with the compressor 1 or 2, blower, or the Dehumidifier (DH) input. This is to complement the Accessory 1 Relay on the ABC board.

<table>
<thead>
<tr>
<th>Position</th>
<th>DIP 4</th>
<th>DIP 5</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>ON</td>
<td>Cycles with Fan or ECM (or G)</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>ON</td>
<td>Cycles with CC1 first stage of compressor or compressor spd 1-6</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>OFF</td>
<td>Cycles with CC2 second stage of compressor or compressor spd 7-12</td>
</tr>
<tr>
<td>4</td>
<td>OFF</td>
<td>OFF</td>
<td>Cycles with DH input from ABC board</td>
</tr>
</tbody>
</table>

IntelliZone2 Zoning Compatibility

(Optional IntelliZone2 Communicating Zoning)

A dedicated input to connect and communicate with the IntelliZone2 (IZ2) zoning system is provided on P7 on the AHB and AXB. This is a dedicated communication port using a proprietary ModBus protocol. An AXB in the compressor section or an AHB in the air handler is required. Consult the Intellizone2 literature for more information.

Communicating Digital Thermostats

The Aurora controls system also features either monochromatic or color touch screen graphic display thermostats for user interface. These displays not only feature easy to use graphical interface but display alerts and faults in plain English. Many of the features discussed here may not be applicable without these thermostats.

Energy Monitoring (AXB Board Required in Compressor Section)

(Standard Sensor Kit on ‘Advanced’ models)

The Energy Monitoring Kit includes two current transducers (blower and electric heat) so that the complete power usage of the air handler can be measured. The AID Tool provides configuration detail for the type of blower motor, power adjustment and a line voltage calibration procedure to improve the accuracy. The information can be displayed on the AID Tool or selected communicating thermostats. The TPCM32U03A(*)/04A(*) will display instantaneous energy use while the color touchscreen TPCC32U01(*) will in addition display a 13 month history in graph form. Refer to Compressor Section Start Up Energy Monitoring for configuration details.

Freeze Detection (Air Coil) – uses the FP2 input to protect against ice formation on the air coil. The FP2 input will operate exactly like FP1 except that the set point is 30 degrees and is not field adjustable.

Condensate Overflow – fault is recognized when the impedance between this line and 24 VAC common or chassis ground drops below 100K ohms for 30 seconds continuously.

Leaving Air Temperature (AXB Board Required in Compressor Section)

A leaving air temperature (LAT) thermistor is located near the blower inlet and can be read via the AID tool or AWL.

Electric Heat Staging

The AHB board provides two stages of auxiliary heat operation. During normal operation, the first stage of electric heat is energized 10 seconds after the W command is received. If the demand continues the second stage is of electric heat will be energized after 5 minutes. In an Emergency heat operation the time delay between stage one and stage two will be 2 minutes.
Blower Performance Data Option C cont.

Setting Blower Speed - Variable Speed ECM

The ABC board’s Yellow Config LED will flash the current ECM blower speed selections for “G”, low, and high continuously with a short pause in between. The speeds can also be confirmed with the AID Tool under the Setup/ ECM Setup screen. The Aux will not be flashed but can be viewed in the AID Tool. The ECM blower motor speeds can be field adjusted with or without using an AID Tool.

ECM Setup without an AID Tool

The blower speeds for “G”, Low (Y1), High (Y2), and Aux can be adjusted directly at the Aurora ABC board which utilizes the push button (SW1) on the ABC board. This procedure is outlined in the ECM Configuration Mode portion of the Aurora ‘Base’ Control System section. The Aux cannot be set manually without an AID Tool.

ECM Setup with an AID Tool

A much easier method utilizes the AID Tool to change the airflow using the procedure below. First navigate to the Setup screen and then select ECM Setup. This screen displays the current ECM settings. It allows the technician to enter the setup screens to change the ECM settings. Change the highlighted item using the ◀ and ▶ buttons and then press the □ button to select the item.

Selecting YES will enter ECM speed setup, while selecting NO will return to the previous screen.

ECM Speed Setup - These screens allow the technician to select the “G”, low, high, and auxiliary heat blower speed for the ECM blower motor. Change the highlighted item using the ▲ and ▼ buttons. Press the □ button to select the speed.

After the auxiliary heat speed setting is selected the AID Tool will automatically transfer back to the ECM Setup screen.

Cooling Airflow Setup - These screens allow the technician to select -15%, -10%, -5%, None or +5%. Change the adjustment percentage using the ▲ and ▼ buttons. Press the □ button to save the change.

Blower Performance Data Option C cont.
Unit Start Up

- Check that supply voltage matches nameplate data.
- Fuses, breakers and wire size are correct.
- Confirm that the 15kW or 20kW auxiliary heat kit is wired correctly (see "Electrical Data" section if applicable).
- Low voltage wiring is complete.
- Piping is complete and water system is cleaned and flushed.
- Air is purged from the closed loop system.
- Isolation valves are open, water control valves or pumps are wired.
- Condensate line is open and correctly pitched.
- Transformer switched to 208v if applicable.
- DIP switches are set correctly.
- Blower rotates freely.
- Blower speed is correct.
- Air filter/cleaner is clean and in position.
- Service/access panels are in place.
- Return air temperature is between 50-80°F heating and 60-95°F cooling.
- Check air coil cleanliness to insure optimum performance. Clean as needed according to maintenance guidelines. To obtain maximum performance the air coil should be cleaned before startup. A 10 percent solution of dishwasher detergent and water is recommended for both sides of coil. A thorough water rinse should follow.

Maintenance Filters
Filters must be clean to obtain maximum performance. They should be inspected monthly under normal operating conditions and be replaced when necessary. Units should never be operated without a filter. Always replace the filter with the same type as originally furnished.

Condensate Drain
In areas where airborne bacteria produce slime in the drain pan, it may be necessary to treat chemically to minimize the problem. The condensate drain can pick up lint and dirt, especially with dirty filters.

Blower Motors
The ECM motors are equipped with sealed ball bearings and requires no periodic lubrication.

Air Coil
The air coil must be cleaned to obtain maximum performance. Check once a year under normal operating conditions and, if dirty, brush or vacuum clean. Care must be taken not to damage the aluminum fins while cleaning.

Caution: Fin edges are sharp.

Ethernet Cable
A 100 foot Cat6 Ethernet cable is shipped with the air handler in the 985506-01 SAH Installation Kit. This cable can be plugged into the backside of the Ethernet port located on the top panel of the air handler. The cable then can be routed and connected into the AID Tool port on the compressor section. The installer will then be able to plug the AID Tool into the Ethernet port on the air handler giving him control of the compressor section. If the compressor section is connected to Symphony, the Ethernet cable would connect to the AID Tool port on the back of the Symphony router. If the installer was using the AID Tool and the compressor section equipped with Symphony, the Ethernet cable from the air handler would need to be unplugged, and replaced with the AID Tool cable. The maximum Cat6 cable length should be kept to 150ft or less.

Powering The Controls For Control Option C

Initial Configuration of the Unit
Before operating the unit, apply power and complete the following Aurora Startup procedure for the controls configuration. An AID Tool is recommended for setup, configuration and troubleshooting, especially with an Aurora ‘Advanced’ Control. AID Tool version 2.06 or greater is necessary for AHB setup.

1. Confirm that Dipswitch 1 on SW1 on the AHB board is set in the OFF position.
2. Configure Aurora Screen
 a. In advanced controls - Confirm AHB is added and communicating.
 b. In advanced controls - If using a communicating thermostat confirm the communicating thermostat is added and communicating. Set thermostat mode to off.
 c. In advanced controls - Confirm IntelliZone2, if installed, is added and communicating. Set Zoning system to off mode.
3. Aurora Setup Screen
 a. ECM Setup for Heating Airflow - select "G", low, high and aux blower speeds as appropriate for the unit and electric heat.
 b. Cooling airflow % - sets the cooling airflow % from heating airflow. Factory setting is -15%.

See Compressor Section installation manual for more control instructions.
Dimensional Data - DX Air Handler

Top Flow/Horizontal Unit Configuration

Top View 3-6 Ton

Bottom View

Right Side View 2 Ton

Front View

Right Side View 3-6 Ton

Top View 2 Ton

SAH Air Handler - Topflow/Horizontal

<table>
<thead>
<tr>
<th>Topflow/Horizontal Configuration</th>
<th>Overall Cabinet</th>
<th>Refrigerant Connections</th>
<th>IE4 Cabinet Dimensions Only</th>
</tr>
</thead>
</table>

- **Height:**
 - **D** (in.): 42.6
 - **D** (cm.): 108.2

- **Width:**
 - **E** (in.): 21.2
 - **E** (cm.): 53.8

- **Depth:**
 - **F** (in.): 24.9
 - **F** (cm.): 63.2

- **Power Supply:***
 - **Y:** 1 3/8 KNOCKOUT HIGH VOLTAGE
 - **Z:** 1 1/8 KNOCKOUT HIGH VOLTAGE
 - **AA:** 7/8 KNOCKOUT LOW VOLTAGE

- **Refrigerant Connections:**
 - **X:** 3/4" cond 1/2" cond

- **Condensate:**
 - Plastic 3/4" FPT

- **Discharge Flange:**
 - Installed and extends 1" (25.4 mm) from cabinet

* "Y" IS 1 3/8 KNOCKOUT HIGH VOLTAGE
 * "Z" IS 1 1/8 KNOCKOUT HIGH VOLTAGE
 * "AA" IS 7/8 KNOCKOUT LOW VOLTAGE

32
SAH AIR HANDLER INSTALLATION MANUAL

Dimensional Data - DX Air Handler

Bottom Flow Unit Configuration

SAH Air Handler - Bottom flow

<table>
<thead>
<tr>
<th>Bottomflow Configuration</th>
<th>Overall Cabinet</th>
<th>Refrigerant Connections</th>
<th>POWER SUPPLY 024 ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B C</td>
<td>D E F G H I J K L M N O P Q R S T U V W X Y Z AA BB CC DD</td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>in. 17.5 21.2 47.0</td>
<td>4.4 1.9 2.5 22.8 25.7 27.3 29.5 30.8</td>
<td>1.1 1.7 2.6 4.5 13.0 14.5 15.2 1.8 14.9 3.7 3.5 18.5 18.4 18.4 14.0 14.0 5.5 5.6 9.2 3.8 18.5 18.5 43.8 46.9</td>
</tr>
<tr>
<td></td>
<td>cm. 44.6 53.8 119.4</td>
<td>11.2 4.8 6.4 57.9 64.3 69.3 74.9 78.4</td>
<td>2.8 4.3 7.2 11.4 24.2 24.0 24.2 3.3 24.0 4.5 4.5 51.3 45.7 35.6 5.6 5.6 43.8 46.9</td>
</tr>
<tr>
<td>036</td>
<td>in. 31.5 38.5 102.0</td>
<td>4.4 1.9 6.1 22.8 25.7 28.4 30.3 30.5</td>
<td>1.1 1.7 2.6 4.5 13.0 14.5 15.2 1.8 14.9 3.7 3.5 18.5 18.4 18.4 14.0 14.0 5.5 5.6 9.2 3.8 18.5 18.5 43.8 46.9</td>
</tr>
<tr>
<td></td>
<td>cm. 80.6 97.8 260.0</td>
<td>11.2 4.8 6.5 57.9 64.3 69.3 74.9 77.7</td>
<td>2.7 4.3 7.2 11.4 24.2 24.0 24.2 3.3 24.0 4.5 4.5 51.3 45.7 35.6 5.6 5.6 43.8 46.9</td>
</tr>
<tr>
<td>046-060</td>
<td>in. 24.9 28.3 56.0</td>
<td>4.4 1.9 2.6 24.0 27.0 28.5 31.3 32.8</td>
<td>1.1 1.7 2.6 4.5 13.0 14.5 15.2 1.8 14.9 3.7 3.5 18.5 18.4 18.4 14.0 14.0 5.5 5.6 9.2 3.8 18.5 18.5 43.8 46.9</td>
</tr>
<tr>
<td></td>
<td>cm. 63.2 65.0 147.3</td>
<td>11.2 4.8 6.6 61.0 66.6 72.4 79.5 83.3</td>
<td>2.8 4.3 7.1 11.4 24.2 24.0 24.2 3.3 24.0 4.5 4.5 51.3 45.7 35.6 5.6 5.6 43.8 46.9</td>
</tr>
</tbody>
</table>

Condensate is plastic 3/4" FPT
Discharge flange is field installed and extends 1" (25.4 mm) from cabinet
Replacement Procedures

Obtaining Parts
When ordering service or replacement parts, refer to the model number and serial number of the unit as stamped on the serial plate attached to the unit. If replacement parts are required, mention the date of installation of the unit and the date of failure, along with an explanation of the malfunctions and a description of the replacement parts required.

Service Parts

<table>
<thead>
<tr>
<th>Part Description</th>
<th>SAH Air Handler Refrigerant Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>022</td>
</tr>
<tr>
<td>Refrigeration</td>
<td></td>
</tr>
<tr>
<td>Air Coil</td>
<td>61P740-41</td>
</tr>
<tr>
<td>TXV</td>
<td>33P626-01</td>
</tr>
<tr>
<td>Blower Assembly</td>
<td>54S561-03</td>
</tr>
<tr>
<td>ECM Blower Housing</td>
<td>53P529-01</td>
</tr>
<tr>
<td>ECM Motor 208-230/60/1</td>
<td>14S562-01</td>
</tr>
<tr>
<td>ECM Power Harness</td>
<td></td>
</tr>
<tr>
<td>ECM Control Harness</td>
<td></td>
</tr>
<tr>
<td>Variable Speed</td>
<td></td>
</tr>
<tr>
<td>ECM Motor & Blower/Control Option A</td>
<td></td>
</tr>
<tr>
<td>Blower Assembly</td>
<td>54S561-01</td>
</tr>
<tr>
<td>ECM Blower Housing</td>
<td>53P529-01</td>
</tr>
<tr>
<td>ECM Motor 208-230/60/1</td>
<td>14S558-01</td>
</tr>
<tr>
<td>ECM Power Harness</td>
<td>11P922-01</td>
</tr>
<tr>
<td>ECM Control Harness</td>
<td>11P941-01</td>
</tr>
<tr>
<td>Electrical Control Option A</td>
<td></td>
</tr>
<tr>
<td>Terminal Board</td>
<td>12P561-01</td>
</tr>
<tr>
<td>Transformer 75VAC</td>
<td>15P51B01</td>
</tr>
<tr>
<td>Power Block</td>
<td>12P501A02</td>
</tr>
<tr>
<td>Ground Lug</td>
<td>12P004A</td>
</tr>
<tr>
<td>Electrical Control Option C</td>
<td></td>
</tr>
<tr>
<td>AHB Board</td>
<td>17X558-01</td>
</tr>
<tr>
<td>Transformer 100VAC</td>
<td>15P519-01</td>
</tr>
<tr>
<td>Power Block</td>
<td>12P501A02</td>
</tr>
<tr>
<td>Ground Lug</td>
<td>12P004A</td>
</tr>
<tr>
<td>Condensate Sensor</td>
<td>12P504A01</td>
</tr>
<tr>
<td>FP2 Sensor</td>
<td>12P550-01</td>
</tr>
<tr>
<td>Leaving Air Thermistor</td>
<td>12P555-06</td>
</tr>
<tr>
<td>Current Transducer(s)</td>
<td>12P557-01</td>
</tr>
<tr>
<td>4 Pole Low Voltage Block</td>
<td>12P570-01</td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
</tr>
<tr>
<td>Cat6 Ethernet Cable (100')</td>
<td>11P951-01</td>
</tr>
<tr>
<td>5kW Auxiliary Heat</td>
<td></td>
</tr>
<tr>
<td>Limit</td>
<td>13P725-05</td>
</tr>
<tr>
<td>Fused Backup</td>
<td>13P735-02</td>
</tr>
<tr>
<td>10kW Auxiliary Heat</td>
<td></td>
</tr>
<tr>
<td>Limit</td>
<td>13P725-05</td>
</tr>
<tr>
<td>Fused Backup</td>
<td>13P735-02</td>
</tr>
<tr>
<td>15kW Auxiliary Heat</td>
<td></td>
</tr>
<tr>
<td>Limit</td>
<td>13P725-05</td>
</tr>
<tr>
<td>Limit DPST</td>
<td>13P734-01</td>
</tr>
<tr>
<td>Fused Backup</td>
<td>13P735-02</td>
</tr>
<tr>
<td>20 kW Auxiliary Heat</td>
<td></td>
</tr>
<tr>
<td>Limit</td>
<td>13P725-05</td>
</tr>
<tr>
<td>Limit DPST</td>
<td>13P734-01</td>
</tr>
<tr>
<td>Fused Backup</td>
<td>13P735-02</td>
</tr>
</tbody>
</table>
Revision Guide

<table>
<thead>
<tr>
<th>Pages:</th>
<th>Description:</th>
<th>Date:</th>
<th>By:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Document Creation</td>
<td>01 Mar. 2017</td>
<td>JM</td>
</tr>
</tbody>
</table>
Product: Standard Series Air Handler
Type: R-410A
Size: 2-6 Tons

©2017 The manufacturer has a policy of continual product research and development and reserves the right to change design and specifications without notice.